Skip to main content

Cross-β-Sheet Supersecondary Structure in Amyloid Folds: Techniques for Detection and Characterization

  • Protocol
  • First Online:
Protein Supersecondary Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 932))

Abstract

The formation of protein aggregates is linked to the onset of several human disorders of increasing prevalence, ranging from dementia to diabetes. In most of these diseases, the toxic effect is exerted by the self-assembly of initially soluble proteins into insoluble amyloid-like fibrils. Independently of the protein origin, all these macromolecular assemblies share a common supersecondary structure: the cross-β-sheet conformation, in which a core of β-strands is aligned perpendicularly to the fibril axis forming extended regular β-sheets. Due to this ubiquity, the presence of cross-β-sheet conformational signatures is usually exploited to detect, characterize, and screen for amyloid fibrils in protein samples. Here we describe in detail some of the most commonly used methods to analyze such supersecondary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Groot NS, Sabate R, Ventura S (2009) Amyloids in bacterial inclusion bodies. Trends Biochem Sci 34(8):408–416

    Article  PubMed  Google Scholar 

  2. Jahn TR, Radford SE (2008) Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 469(1):100–117

    Article  PubMed  CAS  Google Scholar 

  3. Dasari M, Espargaro A, Sabate R et al (2011) Bacterial inclusion bodies of Alzheimer’s disease beta-amyloid peptides can be employed to study native-like aggregation intermediate states. Chembiochem 12(3):407–423

    Article  PubMed  CAS  Google Scholar 

  4. Hubbell WL, Cafiso DS, Altenbach C (2000) Identifying conformational changes with site-directed spin labeling. Nat Struct Biol 7(9):735–739. doi:10.1038/78956

    Article  PubMed  CAS  Google Scholar 

  5. Pelczer I, Carter BG (1997) Data processing in multidimensional NMR. Methods Mol Biol 60:71–155

    PubMed  CAS  Google Scholar 

  6. Sawaya MR, Sambashivan S, Nelson R et al (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447(7143):453–457

    Article  PubMed  CAS  Google Scholar 

  7. Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39(1):1–55

    Article  PubMed  CAS  Google Scholar 

  8. Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299

    Article  PubMed  CAS  Google Scholar 

  9. Wasmer C, Lange A, Van Melckebeke H et al (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319(5869):1523–1526

    Article  PubMed  CAS  Google Scholar 

  10. Groenning M, Olsen L, van de Weert M et al (2007) Study on the binding of Thioflavin T to beta-sheet-rich and non-beta-sheet cavities. J Struct Biol 158(3):358–369

    Article  PubMed  CAS  Google Scholar 

  11. Zhavoronkov N, Gritsai Y, Bargheer M et al (2005) Microfocus Cu K(alpha) source for femtosecond X-ray science. Opt Lett 30(13):1737–1739

    Article  PubMed  CAS  Google Scholar 

  12. Makin O, Sikorski P, Serpell L (2007) CLEARER: a new tool for the analysis of X-ray fibre diffraction patterns and diffraction simulation from atomic structural models. J Appl Crystallogr 40:966–972

    Article  Google Scholar 

  13. Steensma DP (2001) “Congo” red: out of Africa? Arch Pathol Lab Med 125(2):250–252

    PubMed  CAS  Google Scholar 

  14. Klunk WE, Pettegrew JW, Abraham DJ (1989) Two simple methods for quantifying low-affinity dye-substrate binding. J Histochem Cytochem 37(8):1293–1297

    Article  PubMed  CAS  Google Scholar 

  15. Klunk WE, Pettegrew JW, Abraham DJ (1989) Quantitative evaluation of Congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem 37(8):1273–1281

    Article  PubMed  CAS  Google Scholar 

  16. Kodali R, Wetzel R (2007) Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol 17(1):48–57

    Article  PubMed  CAS  Google Scholar 

  17. Klunk WE, Jacob RF, Mason RP (1999) Quantifying amyloid by Congo red spectral shift assay. Methods Enzymol 309:285–305

    Article  PubMed  CAS  Google Scholar 

  18. Klunk WE, Jacob RF, Mason RP (1999) Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay. Anal Biochem 266(1):66–76

    Article  PubMed  CAS  Google Scholar 

  19. Inouye H, Nguyen JT, Fraser PE et al (2000) Histidine residues underlie Congo red binding to A beta analogs. Amyloid 7(3):179–188

    Article  PubMed  CAS  Google Scholar 

  20. Sabate R, Estelrich J (2003) Pinacyanol as effective probe of fibrillar beta-amyloid peptide: comparative study with Congo red. Biopolymers 72(6):455–463

    Article  PubMed  CAS  Google Scholar 

  21. Schutz AK, Soragni A, Hornemann S et al (2011) The amyloid-Congo red interface at atomic resolution. Angew Chem Int Ed Engl. doi:10.1002/anie.201008276

  22. Sabate R, Espargaro A, Saupe SJ et al (2009) Characterization of the amyloid bacterial inclusion bodies of the HET-s fungal prion. Microb Cell Fact 8:56

    Article  PubMed  Google Scholar 

  23. Puchtler H, Sweat F (1965) Congo red as a stain for fluorescence microscopy of amyloid. J Histochem Cytochem 13(8):693–694

    Article  PubMed  CAS  Google Scholar 

  24. Giorgadze TA, Shiina N, Baloch ZW et al (2004) Improved detection of amyloid in fat pad aspiration: an evaluation of Congo red stain by fluorescent microscopy. Diagn Cytopathol 31(5):300–306

    Article  PubMed  Google Scholar 

  25. LeVine H 3rd (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284

    Article  PubMed  CAS  Google Scholar 

  26. Naiki H, Gejyo F (1999) Kinetic analysis of amyloid fibril formation. Methods Enzymol 309:305–318

    Article  PubMed  CAS  Google Scholar 

  27. Sabate R, Lascu I, Saupe SJ (2008) On the binding of Thioflavin-T to HET-s amyloid fibrils assembled at pH 2. J Struct Biol 162(3):387–396

    Article  PubMed  CAS  Google Scholar 

  28. Dzwolak W, Pecul M (2005) Chiral bias of amyloid fibrils revealed by the twisted conformation of Thioflavin T: an induced circular dichroism/DFT study. FEBS Lett 579(29):6601–6603

    Article  PubMed  CAS  Google Scholar 

  29. Sabate R, Saupe SJ (2007) Thioflavin T fluorescence anisotropy: an alternative technique for the study of amyloid aggregation. Biochem Biophys Res Commun 360(1):135–138

    Article  PubMed  CAS  Google Scholar 

  30. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  31. Bouchard M, Zurdo J, Nettleton EJ et al (2000) Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci 9(10):1960–1967

    Article  PubMed  CAS  Google Scholar 

  32. de Groot NS, Parella T, Aviles FX et al (2007) Ile-phe dipeptide self-assembly: clues to amyloid formation. Biophys J 92(5):1732–1741

    Article  PubMed  Google Scholar 

  33. Sabate R, Espargaro A, de Groot NS et al (2010) The role of protein sequence and amino acid composition in amyloid formation: scrambling and backward reading of IAPP amyloid fibrils. J Mol Biol 404(2):337–352

    Article  PubMed  CAS  Google Scholar 

  34. Madine J, Jack E, Stockley PG et al (2008) Structural insights into the polymorphism of amyloid-like fibrils formed by region 20–29 of amylin revealed by solid-state NMR and X-ray fiber diffraction. J Am Chem Soc 130(45):14990–15001

    Article  PubMed  Google Scholar 

  35. Morris K, Serpell L (2010) From natural to designer self-assembling biopolymers, the structural characterisation of fibrous proteins & peptides using fibre diffraction. Chem Soc Rev 39(9):3445–3453

    Article  PubMed  CAS  Google Scholar 

  36. Hubbard SJ (1998) The structural aspects of limited proteolysis of native proteins. Biochim Biophys Acta 1382(2):191–206

    Article  PubMed  CAS  Google Scholar 

  37. Collins SR, Douglass A, Vale RD et al (2004) Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol 2(10):e321

    Article  PubMed  Google Scholar 

  38. Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73(6):1055–1058

    Article  PubMed  CAS  Google Scholar 

  39. Sabate R, Gallardo M, Estelrich J (2003) An autocatalytic reaction as a model for the kinetics of the aggregation of beta-amyloid. Biopolymers 71(2):190–195

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants BFU2010-14901 from Ministerio de Ciencia e Innovación (Spain), 2009-SGR-760 and 2009-CTP-00004 from AGAUR (Generalitat de Catalunya). SV has been granted an ICREA Academia award (ICREA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sabaté, R., Ventura, S. (2012). Cross-β-Sheet Supersecondary Structure in Amyloid Folds: Techniques for Detection and Characterization. In: Kister, A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, vol 932. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-065-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-065-6_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-064-9

  • Online ISBN: 978-1-62703-065-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics