Skip to main content

Media Composition: Salts and Osmolality

  • Protocol
  • First Online:
Embryo Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 912))

Abstract

The main components of embryo culture media are salts, which dissociate into their component inorganic ions in aqueous solution. All embryo culture media contain the same six inorganic ions: Na+, K+, Cl-, Ca2+, Mg2+, and SO 2-4 , while most also contain PO 2-4 . The salts that are used to formulate embryo culture media can be traced back to classic saline solutions, particularly Krebs-Ringer Bicarbonate (KRB), that were developed for somatic cells in the first half of the twentieth century. The salt and inorganic ion concentrations in the first successful defined mouse embryo culture medium, Whittens medium, were identical to those in KRB. These remained largely unchanged in embryo culture media for decades, with similar levels found in the standard mouse embryo culture medium, M16, formulated in the 1970s. Human embryos were initially cultured in undefined somatic cell media such as Earles and Hams F-10 with serum added. This changed in the mid-1980s, however, with the development of Quinns HTF, a defined medium specifically formulated for human embryo culture, in which the inorganic ion concentrations are similar to those in M16 and Whittens. While these media were useful both for experimental work and clinically, embryos suffered developmental blocks in all of them, with mouse embryos blocking at the 2-cell stage and human embryos at the 4- to 8-cell stage. Starting in the late 1980s, however, mouse embryo culture media were first developed that alleviated these developmental blocks. These media, CZB and KSOM, had much lower osmolalities than previous media, mainly due to lower inorganic ion concentrations. Indeed, lowering total inorganic ion concentration and osmolality proved key to understanding how media that supported complete preimplantation development in vitro can be formulated. A subsequent improvement was the addition of amino acids to culture media for both mouse and human embryos. At least in part, their beneficial effect during the cleavage stages of development is due to the presence in early preimplantation embryos of mechanisms for cell volume regulation that depend on the accumulation of amino acids as organic osmolytes to provide intracellular osmotic support. These amino acids, principally glycine, replace a portion of the intracellular inorganic ions that would otherwise be needed to maintain cell size, preventing the intracellular ionic strength from rising to deleterious levels and blocking development. Thus, the optimum salts levels, osmolality, and amino acid contents of culture media are not independent, but interact strongly because of their roles in cell volume regulation. In the absence of compounds that preimplantation embryos can use as organic osmolytes, embryos will develop only at lower osmolalities and salt concentrations in the medium. However, when organic osmolytes such as some amino acids are present, embryos will develop in culture at higher osmolarities that are similar to those they experience in tubal fluid in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biggers JD (1998) Reflections on the culture of the preimplantation embryo. Int J Dev Biol 42:879–884

    PubMed  CAS  Google Scholar 

  2. Whitten WK (1956) Culture of tubal mouse ova. Nature 177:96

    Article  PubMed  CAS  Google Scholar 

  3. Giroux EL, Henkin RI (1973) Macromolecular ligands of exchangeable copper, zinc and cadmium in human serum. Bioinorg Chem 2:125–133

    Article  CAS  Google Scholar 

  4. Burton, RF (1975) Appendix A: osmolality and osmotic coefficients. In: Ringer solutions and physiological salines. Wright Scientechnica, Bristol

    Google Scholar 

  5. Brachet A (1912) Développement in vitro de blastodermes et de jeunes embryons de Mammifères. C R Acad Sci Paris 155:1191–1193

    Google Scholar 

  6. Lewis WH, Hartmann CG (1933) Early cleavage stages of the egg of the monkey (Macacus rhesus). Contrib Embryol (Carnegie Inst Wash) 24:187–201

    Google Scholar 

  7. Alexandre H (2001) A history of mammalian embryological research. Int J Dev Biol 45:457–467

    PubMed  CAS  Google Scholar 

  8. Pincus G (1936) The eggs of mammals. MacMillan, New York, NY

    Book  Google Scholar 

  9. Krebs HA, Henseleit K (1932) Untersuchen über die Harnstoffbildung im Tierkörper. Z Phys Chem 210:33–66

    Article  CAS  Google Scholar 

  10. McLaren A, Biggers JD (1958) Successful development and birth of mice cultivated in vitro as early as early embryos. Nature 182:877–878

    Article  PubMed  CAS  Google Scholar 

  11. Whitten WK (1957) Culture of tubal ova. Nature 179:1081–1082

    Article  PubMed  CAS  Google Scholar 

  12. Biggers JD, Whittingham DG, Donahue RP (1967) The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci USA 58:560–567

    Article  PubMed  CAS  Google Scholar 

  13. Whittingham DG, Biggers JD (1967) Fallopian tube and early cleavage in the mouse. Nature 213:942–943

    Article  PubMed  CAS  Google Scholar 

  14. Whittingham DG (1971) Culture of mouse ova. J Reprod Fertil Suppl 14:7–21

    PubMed  CAS  Google Scholar 

  15. Hogan B et al (1994) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Press, Plainview, NY

    Google Scholar 

  16. Baltz JM, Tartia AP (2010) Cell volume regulation in oocytes and early embryos: connecting physiology to successful culture media. Hum Reprod Update 16:166–176

    Article  PubMed  CAS  Google Scholar 

  17. McKiernan SH, Clayton MK, Bavister BD (1995) Analysis of stimulatory and inhibitory amino acids for development of hamster one-cell embryos in vitro. Mol Reprod Dev 42:188–199

    Article  PubMed  CAS  Google Scholar 

  18. Quinn P, Kerin JF, Warnes GM (1985) Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril 44:493–498

    PubMed  CAS  Google Scholar 

  19. Goddard MJ, Pratt HPM (1983) Control of events during early cleavage of the mouse embryo: an analysis of the ‘2-cell block’. Development 73:111–133

    CAS  Google Scholar 

  20. Schini SA, Bavister BD (1988) Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol Reprod 39:1183–1192

    Article  PubMed  CAS  Google Scholar 

  21. Kishi J et al (1991) Block to development in cultured rat 1-cell embryos is overcome using medium HECM-1. Hum Reprod 6: 1445–1448

    PubMed  CAS  Google Scholar 

  22. Camous S et al (1984) Cleavage beyond the block stage and survival after transfer of early bovine embryos cultured with trophoblastic vesicles. J Reprod Fertil 72:479–485

    Article  PubMed  CAS  Google Scholar 

  23. Bolton VN et al (1989) Development of spare human preimplantation embryos in vitro: an analysis of the correlations among gross morphology, cleavage rates, and development to the blastocyst. J In Vitro Fertil Embryo Transfer 6:30–35

    Article  CAS  Google Scholar 

  24. Chatot CL et al (1989) An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil 86:679–688

    Article  PubMed  CAS  Google Scholar 

  25. Lawitts JA, Biggers JD (1991) Optimization of mouse embryo culture media using simplex methods. J Reprod Fertil 91:543–556

    Article  PubMed  CAS  Google Scholar 

  26. Lawitts JA, Biggers JD (1992) Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol Reprod Dev 31:189–194

    Article  PubMed  CAS  Google Scholar 

  27. Biggers JD, Lawitts JA, Lechene CP (1993) The protective action of betaine on the deleterious effects of NaCl on preimplantation mouse embryos in vitro. Mol Reprod Dev 34:380–390

    Article  PubMed  CAS  Google Scholar 

  28. Lawitts JA, Biggers JD (1993) Culture of preimplantation embryos. Methods Enzymol 225:153–164

    Article  PubMed  CAS  Google Scholar 

  29. Erbach GT et al (1994) Differential growth of the mouse preimplantation embryo in chemically defined media (published erratum appears in Biol Reprod 1994 Aug;51(2):345). Biol Reprod 50:1027–1033

    Article  PubMed  CAS  Google Scholar 

  30. Gardner DK, Lane M (1996) Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod 11:2703–2712

    Article  PubMed  CAS  Google Scholar 

  31. Ho Y et al (1995) Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev 41:232–238

    Article  PubMed  CAS  Google Scholar 

  32. Biggers JD, McGinnis LK, Raffin M (2000) Amino acids and preimplantation development of the mouse in protein- free potassium simplex optimized medium. Biol Reprod 63:281–293

    Article  PubMed  CAS  Google Scholar 

  33. Lane M, Gardner DK (1997) Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 109:153–164

    Article  PubMed  CAS  Google Scholar 

  34. Edwards RG (1981) Test-tube babies, 1981. Nature 293:253–256

    Article  PubMed  CAS  Google Scholar 

  35. Borland RM et al (1980) Elemental composition of fluid in the human Fallopian tube. J Reprod Fertil 58:479–482

    Article  PubMed  CAS  Google Scholar 

  36. Lippes J et al (1972) The collection and analysis of human fallopian tubal fluid. Contraception 5:85–103

    Article  PubMed  CAS  Google Scholar 

  37. Gardner DK, Lane M (1999) Embryo culture systems. In: Trounson AO, Gardner DK (eds) Handbook of in vitro fertilization. CRC, Boca Raton, FL

    Google Scholar 

  38. Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535

    Article  PubMed  CAS  Google Scholar 

  39. Hediger MA et al (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins: introduction. Pflugers Arch 447:465–468

    Article  PubMed  CAS  Google Scholar 

  40. Devreker F, Hardy K (1997) Effects of glutamine and taurine on preimplantation development and cleavage of mouse embryos in vitro. Biol Reprod 57:921–928

    Article  PubMed  CAS  Google Scholar 

  41. Baltz JM (2001) Osmoregulation and cell volume regulation in the preimplantation embryo. In: Schatten GP (ed) Current topics in developmental biology. Academic, San Diego, CA

    Google Scholar 

  42. Dawson KM, Baltz JM (1997) Organic osmolytes and embryos: substrates of the Gly and beta transport systems protect mouse zygotes against the effects of raised osmolarity. Biol Reprod 56:1550–1558

    Article  PubMed  CAS  Google Scholar 

  43. Hadi T et al (2005) Similar effects of osmolarity, glucose, and phosphate on cleavage past the 2-cell stage in mouse embryos from outbred and F1 hybrid females. Biol Reprod 72:179–187

    Article  PubMed  CAS  Google Scholar 

  44. Collins JL, Baltz JM (1999) Estimates of mouse oviductal fluid tonicity based on osmotic responses of embryos. Biol Reprod 60:1188–1193

    Article  PubMed  CAS  Google Scholar 

  45. Fiorenza MT et al (2004) Early transcriptional activation of the hsp70.1 gene by osmotic stress in one-cell embryos of the mouse. Biol Reprod 70:1606–1613

    Article  PubMed  CAS  Google Scholar 

  46. Li R et al (2007) Concentration and composition of free amino acids and osmolalities of ­porcine oviductal and uterine fluid and their effects on development of porcine IVF embryos. Mol Reprod Dev 74:1228–1235

    Article  PubMed  CAS  Google Scholar 

  47. Waring DW (1976) Rate of formation and osmolality of oviductal fluid in the cycling rat. Biol Reprod 15:297–302

    Article  PubMed  CAS  Google Scholar 

  48. Williams N, Kraft N, Shortman K (1972) The separation of different cell classes from lymphoid organs. VI. The effect of osmolarity of gradient media on the density distribution of cells. Immunology 22:885–899

    PubMed  CAS  Google Scholar 

  49. Waymouth C (1970) Osmolality of mammalian blood and of media for culture of mammalian cells. In Vitro 6:109–127

    Article  PubMed  CAS  Google Scholar 

  50. Knudsen JF et al (1979) Follicular fluid electrolytes and osmolality in cyclic pigs. J Reprod Fertil 57:419–422

    Article  PubMed  CAS  Google Scholar 

  51. Anon (1980) Normal reference laboratory values. N Engl J Med 302:37–48

    Google Scholar 

  52. Hallows KR, Knauf PA (1994) Principles of cell volume regulation. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC, Boca Raton, FL

    Google Scholar 

  53. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277

    Article  PubMed  CAS  Google Scholar 

  54. Alexander RT, Grinstein S (2006) Na+/H+ exchangers and the regulation of volume. Acta Physiol (Oxf) 187:159–167

    Article  CAS  Google Scholar 

  55. Jiang L, Chernova MN, Alper SL (1997) Secondary regulatory volume increase conferred on Xenopus oocytes by expression of AE2 anion exchanger. Am J Physiol 272: C191–C202

    PubMed  CAS  Google Scholar 

  56. Yancey PH et al (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  PubMed  CAS  Google Scholar 

  57. Lang F, Busch GL, Volkl H (1998) The diversity of volume regulatory mechanisms. Cell Physiol Biochem 8:1–45

    Article  PubMed  CAS  Google Scholar 

  58. Yancey PH (1994) Compatible and counteracting solutes. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC, Boca Raton, FL

    Google Scholar 

  59. Van Winkle LJ, Haghighat N, Campione AL (1990) Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J Exp Zool 253:215–219

    Article  PubMed  Google Scholar 

  60. Hammer MA, Baltz JM (2003) Beta-alanine but not taurine can function as an organic osmolyte in preimplantation mouse embryos cultured from fertilized eggs. Mol Reprod Dev 66:153–161

    Article  PubMed  CAS  Google Scholar 

  61. Steeves CL et al (2003) The glycine neurotransmitter transporter GLYT1 is an organic osmolyte transporter regulating cell volume in cleavage-stage embryos. Proc Natl Acad Sci USA 100:13982–13987

    Article  PubMed  CAS  Google Scholar 

  62. Tartia AP et al (2009) Cell volume regulation is initiated in mouse oocytes after ovulation. Development 136:2247–2254

    Article  PubMed  CAS  Google Scholar 

  63. Hammer MA et al (2000) Glycine transport by single human and mouse embryos. Hum Reprod 15:419–426

    Article  PubMed  CAS  Google Scholar 

  64. Lewis AM, Kaye PL (1992) Characterization of glutamine uptake in mouse two-cell embryos and blastocysts. J Reprod Fertil 95:221–229

    Article  PubMed  CAS  Google Scholar 

  65. Kwon HM, Handler JS (1995) Cell volume regulated transporters of compatible osmolytes. Curr Opin Cell Biol 7:465–471

    Article  PubMed  CAS  Google Scholar 

  66. Pastor-Anglada M et al (1996) Long-term osmotic regulation of amino acid transport systems in mammalian cells. Amino Acids 11:135–151

    CAS  Google Scholar 

  67. Anas MKI et al (2007) The organic osmolytes betaine and proline are transported by a shared system in early preimplantation mouse embryos. J Cell Physiol 210:266–277

    Article  PubMed  CAS  Google Scholar 

  68. Anas MK et al (2008) SIT1 is a betaine/proline transporter that is activated in mouse eggs after fertilization and functions until the 2-cell stage. Development 135:4123–4130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The following people kindly provided helpful information on the commercial human embryo culture media described in this chapter: Wayne Caswell (Irvine Scientific), Björn Comhaire (FertiPro NV), Rasmus Kiil-Nielsen (ORIGIO), Aidan McMahon (Cook Medical, Ireland), Laura Mena (Irvine Scientific), Susie Oliver (VitroLife), Thomas Pool (Fertility Centre of San Antonio), Francis Tekpetey (London Health Science Centre, Ontario), Patrick Quinn (CooperSurgical), and Jason Swain (University of Michigan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay M. Baltz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Baltz, J.M. (2012). Media Composition: Salts and Osmolality. In: Smith, G., Swain, J., Pool, T. (eds) Embryo Culture. Methods in Molecular Biology, vol 912. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-971-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-971-6_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-970-9

  • Online ISBN: 978-1-61779-971-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics