Skip to main content

Individual Analysis of Transposon Polymorphisms by AFLP

  • Protocol
  • First Online:
Mobile Genetic Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 859))

Abstract

The DNA polymorphisms caused by insertion and excision of transposable elements (TEs) are applicable in studying genome dynamics, genetic diversity, and molecular evolution, generating genome-wide molecular maps and investigating functional attributes of transposons in epigenetics and diseases. Identification of individual mutations caused by TEs using the principles of amplified fragment length polymorphism assay is a reliable and cost-effective approach. The method relies upon selective polymerase chain reaction (PCR) of flanking regions of TE insertion sites in the genome. A detailed procedure is described in this chapter that outlines each step starting from the preparation of PCR template to identification and isolation of the polymorphic bands. The approach outlined in this protocol can be adopted to identify individual polymorphisms caused by any transposon in any organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berg DE, Howe MM (1989) Mobile DNA. American Society of Microbiology, Washington, DC

    Google Scholar 

  2. McDonald JF (1993) Evolution and consequences of transposable elements. Curr Opin Genet Dev 3:855–864

    Article  PubMed  CAS  Google Scholar 

  3. Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA 94:7704–7711

    Article  PubMed  CAS  Google Scholar 

  4. Miller WJ, McDonald JF, Pinsker W (1997) Molecular domestication of mobile elements. Genetica 100:261–270

    Article  PubMed  CAS  Google Scholar 

  5. Finnegan DJ (1990) Transposable elements and DNA transposition in eukaryotes. Curr Biol 2:471–477

    CAS  Google Scholar 

  6. Kempken F, Kück U (1998) Transposons in filamentous fungi – facts and perspectives. Bioessays 20:652–659

    Article  PubMed  CAS  Google Scholar 

  7. Pritham EJ (2009) Transposable elements and factors influencing their success in eukaryotes. J Hered 100:648–655

    Article  PubMed  CAS  Google Scholar 

  8. Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  PubMed  CAS  Google Scholar 

  9. Langley CH, Brookfield JFY, Kaplan N (1983) Transposable elements in Mendelian populations. 1. A theory. Genetics 104:457–471

    PubMed  CAS  Google Scholar 

  10. Biémont C (1992) Population genetics of transposable DNA elements. A Drosophila point of view. Genetica 86:67–84

    Google Scholar 

  11. Santolamazza F, et al. (2008) Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J 7:163

    Article  PubMed  Google Scholar 

  12. Lee YC, Langley CH (2010) Transposable elements in natural populations of Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 365:1219–1228.

    Article  PubMed  CAS  Google Scholar 

  13. Capy P, et al. (1994) Horizontal transmission versus ancient origin: mariner in the witness box. Genetica 93:161–170

    Article  PubMed  CAS  Google Scholar 

  14. Rebollo R, et al. (2010) Jumping genes and epigenetics: Towards new species. Gene 454:1–7

    Article  PubMed  CAS  Google Scholar 

  15. Belancio VP, Deininger PL, Roy-Engel AM (2009) LINE dancing in the human genome: transposable elements and disease. Genome Med 1:97

    Article  PubMed  Google Scholar 

  16. O’Donnell KA, Burns KH (2010) Mobilizing diversity: transposable element insertions in genetic variation and disease. Mob DNA 1:21.

    Article  PubMed  Google Scholar 

  17. Huda A, Jordan IK (2009) Epigenetic regulation of Mammalian genomes by transposable elements. Ann N Y Acad Sci 1178:276–284.

    Article  PubMed  CAS  Google Scholar 

  18. Wessler SR (1998) Transposable elements and the evolution of gene expression. Symp Soc Exp Biol 51:115–122

    PubMed  CAS  Google Scholar 

  19. Behura SK, Nair S, Mohan M (2001) Polymorphisms flanking the mariner integration sites in the rice gall midge (Orseolia oryzae Wood-Mason) genome are biotype-specific. Genome 44:947–954

    PubMed  CAS  Google Scholar 

  20. Marcus JM (2005) Jumping genes and AFLP maps: transforming lepidopteran color pattern genetics. Evol Dev 7:108–114

    Article  PubMed  CAS  Google Scholar 

  21. Behura SK (2006) Molecular marker systems in insects: current trends and future avenues. Mol Ecol 15:3087–3113

    Article  PubMed  CAS  Google Scholar 

  22. Behura SK, Shukle RH, Stuart JJ (2010) Assessment of structural variation and molecular mapping of insertion sites of Desmar-like elements in the Hessian fly genome. Insect Mol Biol 19:707–715

    Article  PubMed  CAS  Google Scholar 

  23. Pearce SR, et al. (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J 19:711–717

    Article  PubMed  CAS  Google Scholar 

  24. Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134

    Article  PubMed  CAS  Google Scholar 

  25. Park KC, et al. (2003) A new MITE family, Pangrangja, in Gramineae species. Mol Cells 15:373–380

    PubMed  CAS  Google Scholar 

  26. Casa A, et al. (2000) The MITE family Heartbreaker (Hbr): Molecular markers in maize. Proc Natl Acad Sci USA 97:10083–10089

    Article  PubMed  CAS  Google Scholar 

  27. Hayes F (2003) Transposon-based strategies for microbial functional genomics and proteomics. Annu Rev Genet 37:3–29

    Article  PubMed  CAS  Google Scholar 

  28. Nakayashiki H, et al. (1999) Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi. Genetics 153:693–703

    PubMed  CAS  Google Scholar 

  29. Eto Y, et al. (2001) Comparative analyses of the distribution of various transposable elements in Pyricularia and their activity during and after the sexual cycle. Mol Gen Genet 264:565–577

    Article  PubMed  CAS  Google Scholar 

  30. Arcà B, Savakis C (2000) Distribution of the transposable element Minos in the genus Drosophila. Genetica 108:263–267

    Article  PubMed  Google Scholar 

  31. Syed NH, Flavell AJ (2006) Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions. Nat Protoc 1:2746–2752

    Article  PubMed  CAS  Google Scholar 

  32. Vos P, et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  33. Waugh R, et al. (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  PubMed  CAS  Google Scholar 

  34. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol (Amst) 14:389–394

    Google Scholar 

  35. Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  PubMed  CAS  Google Scholar 

  36. Van den Broeck D, et al. (1998) Transposon display identifies individual transposable elements in high copy number lines. Plant J 13:121–129

    PubMed  Google Scholar 

  37. Robertson HM (1993) The mariner transposable element is widespread in insects. Nature 362:241–245

    Article  PubMed  CAS  Google Scholar 

  38. Harris MO, et al. (2003). Grasses and gall midges: Plant defense and insect adaptation. Annu Rev Entomol 48: 549–577

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am thankful to Dr. David W. Severson at the University of Notre Dame for encouragement, support, and help. I also gratefully acknowledge Dr. Jeffery J. Staurt at Purdue University for invitation and encouragement to write this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta K. Behura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Behura, S.K. (2012). Individual Analysis of Transposon Polymorphisms by AFLP. In: Bigot, Y. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 859. Humana Press. https://doi.org/10.1007/978-1-61779-603-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-603-6_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-602-9

  • Online ISBN: 978-1-61779-603-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics