Skip to main content

Design Considerations for Genetic Linkage and Association Studies

  • Protocol
  • First Online:
Statistical Human Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 850))

Abstract

This chapter describes the main issues that genetic epidemiologists usually consider in the design of linkage and association studies. For linkage, we briefly consider the situation of rare, highly penetrant alleles showing a disease pattern consistent with Mendelian inheritance investigated through parametric methods in large pedigrees or with autozygosity mapping in inbred families, and we then turn our focus to the most common design, affected sibling pairs, of more relevance for common, complex diseases. Theoretical and more practical power and sample size calculations are provided as a function of the strength of the genetic effect being investigated. We also discuss the impact of other determinants of statistical power such as disease heterogeneity, pedigree, and genotyping errors, as well as the effect of the type and density of genetic markers. Linkage studies should be as large as possible to have sufficient power in relation to the expected genetic effect size. Segregation analysis, a formal statistical technique to describe the underlying genetic susceptibility, may assist in the estimation of the relevant parameters to apply, for instance. However, segregation analyses estimate the total genetic component rather than a single-locus effect. Locus heterogeneity should be considered when power is estimated and at the analysis stage, i.e. assuming smaller locus effect than the total genetic component from segregation studies. Disease heterogeneity should be minimised by considering subtypes if they are well defined or by otherwise collecting known sources of heterogeneity and adjusting for them as covariates; the power will depend upon the relationship between the disease subtype and the underlying genotypes. Ultimately, identifying susceptibility alleles of modest effects (e.g. RR≤1.5) requires a number of families that seem unfeasible in a single study. Meta-analysis and data pooling between different research groups can provide a sizeable study, but both approaches require even a higher level of vigilance about locus and disease heterogeneity when data come from different populations. All necessary steps should be taken to minimise pedigree and genotyping errors at the study design stage as they are, for the most part, due to human factors. A two-stage design is more cost-effective than one stage when using short tandem repeats (STRs). However, dense single-nucleotide polymorphism (SNP) arrays offer a more robust alternative, and due to their lower cost per unit, the total cost of studies using SNPs may in the future become comparable to that of studies using STRs in one or two stages. For association studies, we consider the popular case–control design for dichotomous phenotypes, and we provide power and sample size calculations for one-stage and multistage designs. For candidate genes, guidelines are given on the prioritisation of genetic variants, and for genome-wide association studies (GWAS), the issue of choosing an appropriate SNP array is discussed. A warning is issued regarding the danger of designing an underpowered replication study following an initial GWAS. The risk of finding spurious association due to population stratification, cryptic relatedness, and differential bias is underlined. GWAS have a high power to detect common variants of high or moderate effect. For weaker effects (e.g. relative risk<1.2), the power is greatly reduced, particularly for recessive loci. While sample sizes of 10,000 or 20,000 cases are not beyond reach for most common diseases, only meta-analyses and data pooling can allow attaining a study size of this magnitude for many other diseases. It is acknowledged that detecting the effects from rare alleles (i.e. frequency<5%) is not feasible in GWAS, and it is expected that novel methods and technology, such as next-generation resequencing, will fill this gap. At the current stage, the choice of which GWAS SNP array to use does not influence the power in populations of European ancestry. A multistage design reduces the study cost but has less power than the standard one-stage design. If one opts for a multistage design, the power can be improved by jointly analysing the data from different stages for the SNPs they share. The estimates of locus contribution to disease risk from genome-wide scans are often biased, and relying on them might result in an underpowered replication study. Population structure has so far caused less spurious associations than initially feared, thanks to systematic ethnicity matching and application of standard quality control measures. Differential bias could be a more serious threat and must be minimised by strictly controlling all the aspects of DNA acquisition, storage, and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee-Kirsch M A, et al (2006) Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Amer J Hum Genet 79: 731–737

    Article  PubMed  CAS  Google Scholar 

  2. Kruglyak L, et al (1996) Parametric and nonparametric linkage analysis: A unified multipoint approach. Amer J Hum Genet 58: 1347–1363

    PubMed  CAS  Google Scholar 

  3. Lander ES, Botstein D (1987) Homozygosity Mapping - a Way to Map Human Recessive Traits with the DNA of Inbred Children. Science 236: 1567–1570

    Article  PubMed  CAS  Google Scholar 

  4. Mueller RF, Bishop DT (1993) Autozygosity Mapping, Complex Consanguinity, and Autosomal Recessive Disorders. J Med Genet 30: 798–799

    Article  PubMed  CAS  Google Scholar 

  5. Wang S, Haynes C, Barany F, Ott, J (2009) Genome-Wide Autozygosity Mapping in Human Populations. Genet Epidemiol 33: 172–180

    Article  PubMed  Google Scholar 

  6. Boehnke M (1986) Estimating the Power of a Proposed Linkage Study - a Practical Computer-Simulation Approach. Amer J Hum Genet 39: 513–527

    PubMed  CAS  Google Scholar 

  7. Ploughman LM, Boehnke M (1989) Estimating the Power of a Proposed Linkage Study for a Complex Genetic Trait. Amer J Hum Genet 44: 543–551

    PubMed  CAS  Google Scholar 

  8. Samani N J, et al. (2005) A genomewide linkage study of 1,933 families affected by premature coronary artery disease: The British heart foundation (BHF) family heart study. Amer J Hum Genet 77: 1011–1020

    Article  PubMed  Google Scholar 

  9. Whittemore AS, Tu IP (1998) Simple, robust linkage tests for affected sibs. Amer J Hum Genet 62: 1228–1242

    Article  PubMed  CAS  Google Scholar 

  10. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases, Science 273: 1516–1517

    Article  PubMed  CAS  Google Scholar 

  11. Risch N (1990) Linkage Strategies for Genetically Complex Traits.2. The Power of Affected Relative Pairs. Amer J Hum Genet 46: 229–241

    PubMed  CAS  Google Scholar 

  12. Lander E, Kruglyak L (1995) Genetic Dissection of Complex Traits - Guidelines for Interpreting and Reporting Linkage Results, Nature Genetics 11: 241–247

    Article  PubMed  CAS  Google Scholar 

  13. Bishop DT, Williamson JA (1990) The Power of Identity-by-State Methods for Linkage Analysis. Amer J Hum Genet 46: 254–265

    PubMed  CAS  Google Scholar 

  14. Risch NJ (2000) Searching for genetic determinants in the new millennium, Nature 405: 847–856

    Article  PubMed  CAS  Google Scholar 

  15. Brown BD, et al (2010) An evaluation of inflammatory gene polymorphisms in sibships discordant for premature coronary artery disease: the GRACE-IMMUNE study, BMC Medicine 8: 5

    Article  PubMed  Google Scholar 

  16. Hodge SE, Vieland VJ, Greenberg DA (2002) HLODs remain powerful tools for detection of linkage in the presence of genetic heterogeneity. Amer J Hum Genet 70: 556–558

    Article  PubMed  Google Scholar 

  17. Whittemore AS, Halpern J (2001) Problems in the definition, interpretation, and evaluation of genetic heterogeneity. Amer J Hum Genet 68: 457–65

    Article  PubMed  CAS  Google Scholar 

  18. Altmuller J, et al (2001) Genomewide scans of complex human diseases: True linkage is hard to find. Amer J Hum Genet 69: 936–50

    Article  PubMed  CAS  Google Scholar 

  19. Hauser ER, et al. (2004) Ordered subset analysis in genetic linkage mapping of complex traits. Genet Epidemiol 27: 53–63

    Article  PubMed  Google Scholar 

  20. Nsengimana J, et al (2007) Enhanced linkage of a locus on chromosome 2 to premature coronary artery disease in the absence of hypercholesterolemia. Eur J Hum Genet 15: 313–319

    Article  PubMed  CAS  Google Scholar 

  21. Almasy L, Blangero J (2009) Human QTL linkage mapping. Genetica 136: 333–340

    Article  PubMed  CAS  Google Scholar 

  22. Abecasis GR, Cherny SS, and Cardon LR (2001) The impact of genotyping error on family-based analysis of quantitative traits. Eur J Hum Genet 9: 130–134

    Article  PubMed  CAS  Google Scholar 

  23. Abecasis GR, et al (2001) GRR: graphical representation of relationship errors. Bioinformatics 17: 742–743

    Article  PubMed  CAS  Google Scholar 

  24. Pompanon F, et al (2005) Genotyping errors: Causes, consequences and solutions, Nat Rev Genet 6: 847–859

    Article  PubMed  CAS  Google Scholar 

  25. Chang YPC, et al (2006) The impact of data quality on the identification of complex disease genes: experience from the Family Blood Pressure Program. Eur J Hum Genet 14: 469–477

    Article  PubMed  CAS  Google Scholar 

  26. Goring HHH, OttJ (1997) Relationship estimation in affected rib pair analysis of late-onset diseases. Eur J Hum Genet 5: 69–77

    Google Scholar 

  27. Boehnke M, Cox NJ (1997) Accurate inference of relationships in sib-pair linkage studies. Amer J Hum Genet 61: 423–429

    Article  PubMed  CAS  Google Scholar 

  28. Douglas JA, Boehnke M, Lange K (2000) A multipoint method for detecting genotyping errors and mutations in sibling-pair linkage data. Amer J Hum Genet 66: 1287–1297

    Article  PubMed  CAS  Google Scholar 

  29. Sun L, Wilder K, McPeek MS (2002) Enhanced pedigree error detection. Hum Hered 54: 99–110

    Article  PubMed  Google Scholar 

  30. Sobel E, Papp JC, Lange K (2002) Detection and integration of genotyping errors in statistical genetics. Amer J Hum Genet 70: 496–508

    Article  PubMed  Google Scholar 

  31. Ray A, Weeks DE (2008) Relationship uncertainty linkage statistics (RULS): Affected relative pair statistics that model relationship uncertainty. Genet Epidemiol 32: 313–324

    Article  PubMed  Google Scholar 

  32. Hauser ER, et al. (1996) Affected-sib-pair interval mapping and exclusion for complex genetic traits: Sampling considerations. Genet Epidemiol 13: 117–137

    Article  PubMed  CAS  Google Scholar 

  33. Sawcer SJ, et al (2004) Enhancing linkage analysis of complex disorders: an evaluation of high-density genotyping. Hum Mol Genet 13: 1943–1949

    Article  PubMed  Google Scholar 

  34. Evans DM, Cardon LR (2004) Guidelines for genotyping in genomewide linkage studies: Single-nucleotide-polymorphism maps versus microsatellite maps. Amer J Hum Genet 75: 687–692

    Article  PubMed  CAS  Google Scholar 

  35. Guo XQ, Elston RC (2000) Two-stage global search designs for linkage analysis II: Including discordant relative pairs in the study. Genet Epidemiol 18: 111–27

    Article  PubMed  CAS  Google Scholar 

  36. Huang QQ, Shete S, Amos CI (2004) Ignoring linkage disequilibrium among tightly linked markers induces false-positive evidence of linkage for affected sib pair analysis. Amer J Hum Genet 75: 1106–1112

    Article  PubMed  CAS  Google Scholar 

  37. Schaid DJ, et al (2004) Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility loci. Am J Hum Genet 75: 948–65

    Article  PubMed  CAS  Google Scholar 

  38. Nsengimana J, Renard H, Goldgar D (2005) Linkage analysis of complex diseases using microsatellites and single-nucleotide polymorphisms: application to alcoholism. BMC Genet 6: S10

    Article  PubMed  Google Scholar 

  39. Wilcox MA, et al (2005) Comparison of single-nucleotide polymorphisms and microsatellite markers for linkage analysis in the COGA and simulated data sets for genetic analysis workshop 14. Genet Epidemiol 29: S7-S28

    Article  PubMed  Google Scholar 

  40. Boyles AL, et al (2005) Linkage disequilibrium inflates type I error rates in multipoint linkage analysis when parental genotypes are missing. Hum Hered 59: 220–227

    Article  PubMed  Google Scholar 

  41. Abecasis GR, Wigginton JE (2005) Handling marker-marker linkage disequilibrium: Pedigree analysis with clustered markers. Am J Hum Genet 77: 754–67

    Article  PubMed  CAS  Google Scholar 

  42. Kurbasic A, Hossjer O (2008) A general method for linkage disequilibrium correction for multipoint linkage and association. Genet Epidemiol 32: 647–57

    Article  PubMed  Google Scholar 

  43. Webb EL, Sellick GS, Houlston RS (2005) SNPLINK: multipoint linkage analysis of densely distributed SNP data incorporating automated linkage disequilibrium removal. Bioinformatics 21: 3060–3061

    Article  PubMed  CAS  Google Scholar 

  44. Fukuda Y, et al (2009) SNP HiTLink: a high-throughput linkage analysis system employing dense SNP data. BMC Bioinformatics 10: 121

    Article  PubMed  CAS  Google Scholar 

  45. Selmer KK, et al (2009) Genome-wide Linkage Analysis with Clustered SNP Markers. J Biomol Screen 14: 92–96

    Article  PubMed  CAS  Google Scholar 

  46. Fischer ANM, et al (2010) A genome-wide linkage analysis in 181 German sarcoidosis families using clustered bi-allelic markers. Chest 138: 151–157

    Article  PubMed  Google Scholar 

  47. Guo XQ, Elston RC (2000) Two-stage global search designs for linkage analysis I: Use of the mean statistic for affected sib pairs. Genet Epidemiol 18: 97–110

    Article  PubMed  CAS  Google Scholar 

  48. Ochs-Balcom HM, et al (2010) Program update and novel use of the DESPAIR program to design a genome-wide linkage study using relative pairs. Hum Hered 69: 45–51

    Article  PubMed  CAS  Google Scholar 

  49. Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19: 149–150

    Article  PubMed  CAS  Google Scholar 

  50. WTCCC. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678

    Article  Google Scholar 

  51. Bishop DT, et al (2009) Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 41: 920–925

    Article  PubMed  CAS  Google Scholar 

  52. Panoutsopoulou KZE (2009) Finding common susceptibility variants for complex disease: past, present and future. Brief Funct Genomic Proteomic 8: 345–352

    Article  PubMed  Google Scholar 

  53. Spencer CCA, et al (2009) Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip. PLOS Genetics 5: e1000477

    Article  PubMed  Google Scholar 

  54. McCarthy MI, et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9: 356–369

    Article  PubMed  CAS  Google Scholar 

  55. Amos CI (2007) Successful design and conduct of genome-wide association studies. Hum Mol Genet Spec 2: R220-R225

    Article  Google Scholar 

  56. Zondervan KT, Cardon LR, Kennedy SH (2002) What makes a good case-control study? Design issues for complex traits such as endometriosis. Hum Reprod 17: 1415–1423

    Article  PubMed  Google Scholar 

  57. Newton-Cheh C, Hirschhorn JN (2005) Genetic association studies of complex traits: design and analysis issues. Mutat Res-Fund Mol M 573: 54–69

    Article  CAS  Google Scholar 

  58. Clayton DG, et al (2005) Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet 37: 1243–1246

    Article  PubMed  CAS  Google Scholar 

  59. Plagnol V, et al (2007) A method to address differential bias in genotyping in large-scale association studies. PLOS Genet 3: e74

    Article  PubMed  Google Scholar 

  60. Pluzhnikov A, et al. (2010) Spoiling the whole bunch: quality control aimed at preserving the integrity of high-throughput genotyping. Am J Hum Genet 87: 123–28

    Article  PubMed  CAS  Google Scholar 

  61. Tabor HK, Risch NJ, Myers RM (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3: 391–7

    Article  PubMed  CAS  Google Scholar 

  62. Pettersson FH, et al. (2009) Marker selection for genetic case-control association studies. Nat Protoc 4: 743–752

    Article  PubMed  CAS  Google Scholar 

  63. Hirschhorn JN, Daly MJ. (2005) Genome-wide association studies for common diseases and complex traits, Nature Reviews Genetics 6: 95–108

    Article  PubMed  CAS  Google Scholar 

  64. Pahl R, Schafer H, Muller HH (2009) Optimal multistage designs-025EFa general framework for efficient genome-wide association studies. Biostatistics 10: 297–309

    Article  PubMed  Google Scholar 

  65. Skol AD, et al. (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38: 209–213

    Article  PubMed  CAS  Google Scholar 

  66. Bowden J, Dudbridge F (2009) Unbiased Estimation and Inference for Replicated Associations Following a Genome Scan. Genet Epidemiol 33: 406–418

    Article  PubMed  Google Scholar 

  67. Garner C (2007) Upward bias in odds ratio estimates from genome-wide association studies. Genet Epidemiol 31: 288–295

    Article  PubMed  Google Scholar 

  68. Goldgar D, et al (2007) BRCA phenocopies or ascertainment bias? J Med Genet 44: 10–15

    Google Scholar 

  69. Terwilliger JD, Weiss KM (2003) Confounding, ascertainment bias, and the blind quest for a genetic ‘fountain of youth’. Ann Med 35: 532–544

    Article  PubMed  Google Scholar 

  70. Astle, W., and Balding, D. J. (2009) Population Structure and Cryptic Relatedness in Genetic Association Studies. Stat Sci 24: 451–471

    Article  Google Scholar 

  71. Voight BF, Pritchard JK (2005) Confounding from cryptic relatedness in case-control association studies. PLOS Genet 1: 302–311

    Article  CAS  Google Scholar 

  72. Marchini J, et al (2004) The effects of human population structure on large genetic association studies. Nat Genet 36: 512–517

    Article  PubMed  CAS  Google Scholar 

  73. Choi Y, Wijsman EM, Weir BS (2009) Case-Control Association Testing in the Presence of Unknown Relationships. Genet Epidemiol 33: 668–678

    Article  PubMed  Google Scholar 

  74. Slager SL, Schaid DJ (2001) Evaluation of candidate genes in case-control studies: A statistical method to account for related subjects. Am J Human Genet 68: 1457–1462

    Article  CAS  Google Scholar 

  75. Bourgain C, et al (2003) Novel case-control test in a founder population identifies P-selectin as an atopy-susceptibility locus. Am J Hum Genet 73: 612–626

    Article  PubMed  CAS  Google Scholar 

  76. Pritchard JK, et al. (2000) Association mapping in structured populations. Am J Hum Genet 67: 170–181

    Article  PubMed  CAS  Google Scholar 

  77. Sillanpaa MJ (2011) Overview of techniques to account for confounding due to population stratification and cryptic relatedness in genomic data association analyses. Heredity 106(4):511–519

    Google Scholar 

  78. Price AL, et al (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11: 459–463

    Article  PubMed  CAS  Google Scholar 

  79. Laird NM, Lange C (2009) The Role of Family-Based Designs in Genome-Wide Association Studies. Statist Sci 24: 388–397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémie Nsengimana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nsengimana, J., Bishop, D.T. (2012). Design Considerations for Genetic Linkage and Association Studies. In: Elston, R., Satagopan, J., Sun, S. (eds) Statistical Human Genetics. Methods in Molecular Biology, vol 850. Humana Press. https://doi.org/10.1007/978-1-61779-555-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-555-8_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-554-1

  • Online ISBN: 978-1-61779-555-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics