Skip to main content
Log in

Human QTL linkage mapping

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Human quantitative trait locus (QTL) linkage mapping, although based on classical statistical genetic methods that have been around for many years, has been employed for genome-wide screening for only the last 10–15 years. In this time, there have been many success stories, ranging from QTLs that have been replicated in independent studies to those for which one or more genes underlying the linkage peak have been identified to a few with specific functional variants that have been confirmed in in vitro laboratory assays. Despite these successes, there is a general perception that linkage approaches do not work for complex traits, possibly because many human QTL linkage studies have been limited in sample size and have not employed the family configurations that maximize the power to detect linkage. We predict that human QTL linkage studies will continue to be productive for the next several years, particularly in combination with RNA expression level traits that are showing evidence of regulatory QTLs of large effect sizes and in combination with high-density genome-wide SNP panels. These SNP panels are being used to identify QTLs previously localized by linkage and linkage results are being used to place informative priors on genome-wide association studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almasy L (2003) Quantitative risk factors as indices of alcoholism susceptibility. Ann Med 35(5):337–343. doi:10.1080/07853890310004903

    Article  PubMed  Google Scholar 

  • Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62(5):1198–1211. doi:10.1086/301844

    Article  PubMed  CAS  Google Scholar 

  • Almasy L, Blangero J (2001) Endophenotypes as quantitative risk factors for psychiatric disease: rationale and study design. Am J Med Genet 105(1):42–44. doi :10.1002/1096-8628(20010108)105:1<42::AID-AJMG1055>3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  • Arnett DK, Miller MB, Coon H, Ellison RC, North KE, Province M et al (2004) Genome-wide linkage analysis replicates susceptibility locus for fasting plasma triglycerides: NHLBI Family Heart Study. Hum Genet 115(6):468–474. doi:10.1007/s00439-004-1182-y

    Article  PubMed  CAS  Google Scholar 

  • Austin MA, Edwards KL, Monks SA, Koprowicz KM, Brunzell JD, Motulsky AG et al (2003) Genome-wide scan for quantitative trait loci influencing LDL size and plasma triglyceride in familial hypertriglyceridemia. J Lipid Res 44(11):2161–2168. doi:10.1194/jlr.M300272-JLR200

    Article  PubMed  CAS  Google Scholar 

  • Barker D, Green P, Knowlton R, Schumm J, Lander E, Oliphant A et al (1987) Genetic linkage map of human chromosome 7 with 63 DNA markers. Proc Natl Acad Sci USA 84(22):8006–8010. doi:10.1073/pnas.84.22.8006

    Article  PubMed  CAS  Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, New York, pp 145–162

    Google Scholar 

  • Blangero J, Williams JT, Almasy L (2001) Variance component methods for detecting complex trait loci. Adv Genet 42:151–181. doi:10.1016/S0065-2660(01)42021-9

    Article  PubMed  CAS  Google Scholar 

  • Blangero J, Williams JT, Almasy L (2003) Novel family-based approaches to genetic risk in thrombosis. J Thromb Haemost 1(7):1391–1397. doi:10.1046/j.1538-7836.2003.00310.x

    Article  PubMed  CAS  Google Scholar 

  • Cardon LR, Smith SD, Fulker DW, Kimberling WJ, Pennington BF, DeFries JC (1994) Quantitative trait locus for reading disability on chromosome 6. Science 266(5183):276–279. doi:10.1126/science.7939663

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, Broman KW, Liang KY (2004) Quantitative trait linkage analysis by generalized estimating equations: unification of variance components and Haseman–Elston regression. Genet Epidemiol 26(4):265–272. doi:10.1002/gepi.10315

    Article  PubMed  Google Scholar 

  • Cole SA, Comuzzie AG, Dyer T, Britten M, Bounpheng M, Rines D et al (2003) Genetic variation at the POMC locus partially defines the chromosome 2p human obesity quantitative trait locus. Am J Hum Genet 73(suppl):195

    Google Scholar 

  • Comuzzie AG, Hixson JE, Almasy L, Mitchell BD, Mahaney MC, Dyer TD et al (1997) A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nat Genet 15(3):273–276. doi:10.1038/ng0397-273

    Article  PubMed  CAS  Google Scholar 

  • Coon H, Leppert MF, Eckfeldt JH, Oberman A, Myers RH, Peacock JM et al (2001) Genome-wide linkage analysis of lipids in the Hypertension Genetic Epidemiology Network (HyperGEN) Blood Pressure Study. Arterioscler Thromb Vasc Biol 21(12):1969–1976. doi:10.1161/hq1201.100228

    Article  PubMed  CAS  Google Scholar 

  • Covault J, Gelernter J, Hesselbrock V, Nellissery M, Kranzler HR (2004) Allelic and haplotypic association of GABRA2 with alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 129(1):104–109. doi:10.1002/ajmg.b.30091

    Article  Google Scholar 

  • Curran JE, Jowett JB, Elliott KS, Gao Y, Gluschenko K, Wang J et al (2005) Genetic variation in selenoprotein S influences inflammatory response. Nat Genet 37(11):1234–1241. doi:10.1038/ng1655

    Article  PubMed  CAS  Google Scholar 

  • Daniels SE, Bhattacharrya S, James A, Leaves NI, Young A, Hill MR et al (1996) A genome-wide search for quantitative trait loci underlying asthma. Nature 383(6597):247–250. doi:10.1038/383247a0

    Article  PubMed  CAS  Google Scholar 

  • Daw EW, Wijsman EM, Thompson EA (2003) A score for Bayesian genome screening. Genet Epidemiol 24(3):181–190. doi:10.1002/gepi.10230

    Article  PubMed  Google Scholar 

  • Drayna D, Coon H, Kim UK, Elsner T, Cromer K, Otterud B et al (2003) Genetic analysis of a complex trait in the Utah Genetic Reference Project: a major locus for PTC taste ability on chromosome 7q and a secondary locus on chromosome 16p. Hum Genet 112(5–6):567–572

    PubMed  CAS  Google Scholar 

  • Duggirala R, Stern MP, Mitchell BD, Reinhart LJ, Shipman PA, Uresandi OC et al (1996) Quantitative variation in obesity-related traits and insulin precursors linked to the OB gene region on human chromosome 7. Am J Hum Genet 59(3):694–703

    PubMed  CAS  Google Scholar 

  • Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ et al (1999) Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet 64(4):1127–1140. doi:10.1086/302316

    Article  PubMed  CAS  Google Scholar 

  • Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ et al (2000) A major susceptibility locus influencing plasma triglyceride concentrations is located on chromosome 15q in Mexican Americans. Am J Hum Genet 66(4):1237–1245. doi:10.1086/302849

    Article  PubMed  CAS  Google Scholar 

  • Edenberg HJ, Dick DM, Xuei X, Tian H, Almasy L, Bauer LO et al (2004) Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 74(4):705–714. doi:10.1086/383283

    Article  PubMed  CAS  Google Scholar 

  • Fisher SE, Marlow AJ, Lamb J, Maestrini E, Williams DF, Richardson AJ et al (1999) A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. Am J Hum Genet 64(1):146–156. doi:10.1086/302190

    Article  PubMed  CAS  Google Scholar 

  • Fulker DW, Cherny SS, Cardon LR (1995) Multipoint interval mapping of quantitative trait loci, using sib pairs. Am J Hum Genet 56(5):1224–1233

    PubMed  CAS  Google Scholar 

  • Ghosh S, Collins FS (1996) The geneticist’s approach to complex disease. Annu Rev Med 47:333–353. doi:10.1146/annurev.med.47.1.333

    Article  PubMed  CAS  Google Scholar 

  • Goring HH, Terwilliger JD, Blangero J (2001) Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 69(6):1357–1369. doi:10.1086/324471

    Article  PubMed  CAS  Google Scholar 

  • Goring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA et al (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160(4):636–645. doi:10.1176/appi.ajp.160.4.636

    Article  PubMed  Google Scholar 

  • Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38(3):320–323. doi:10.1038/ng1732

    Article  PubMed  CAS  Google Scholar 

  • Grigorenko EL, Wood FB, Meyer MS, Hart LA, Speed WC, Shuster A et al (1997) Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. Am J Hum Genet 60(1):27–39

    PubMed  CAS  Google Scholar 

  • Grigorenko EL, Wood FB, Meyer MS, Pauls DL (2000) Chromosome 6p influences on different dyslexia-related cognitive processes: further confirmation. Am J Hum Genet 66(2):715–723. doi:10.1086/302755

    Article  PubMed  CAS  Google Scholar 

  • Hager J, Dina C, Francke S, Dubois S, Houari M, Vatin V et al (1998) A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nat Genet 20(3):304–308. doi:10.1038/3123

    Article  PubMed  CAS  Google Scholar 

  • Haseman JK, Elston RC (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2(1):3–19. doi:10.1007/BF01066731

    Article  PubMed  CAS  Google Scholar 

  • Heath SC (1997) Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 61(3):748–760. doi:10.1086/515506

    Article  PubMed  CAS  Google Scholar 

  • Hixson JE, Almasy L, Cole S, Birnbaum S, Mitchell BD, Mahaney MC et al (1999) Normal variation in leptin levels in associated with polymorphisms in the proopiomelanocortin gene, POMC. J Clin Endocrinol Metab 84(9):3187–3191. doi:10.1210/jc.84.9.3187

    Article  PubMed  CAS  Google Scholar 

  • Hopper JL, Mathews JD (1982) Extensions to multivariate normal models for pedigree analysis. Ann Hum Genet 46(4):373–383. doi:10.1111/j.1469-1809.1982.tb01588.x

    Article  PubMed  CAS  Google Scholar 

  • Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D (2003) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299(5610):1221–1225. doi:10.1126/science.1080190

    Article  PubMed  CAS  Google Scholar 

  • Kissebah AH, Sonnenberg GE, Myklebust J, Goldstein M, Broman K, James RG et al (2000) Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA 97(26):14478–14483. doi:10.1073/pnas.97.26.14478

    Article  PubMed  CAS  Google Scholar 

  • Lehman DM, Hunt KJ, Leach RJ, Hamlington J, Arya R, Abboud HE et al (2007) Haplotypes of transcription factor 7-like 2 (TCF7L2) gene and its upstream region are associated with type 2 diabetes and age of onset in Mexican Americans. Diabetes 56(2):389–393. doi:10.2337/db06-0860

    Article  PubMed  CAS  Google Scholar 

  • Long JC, Knowler WC, Hanson RL, Robin RW, Urbanek M, Moore E et al (1998) Evidence for genetic linkage to alcohol dependence on chromosomes 4 and 11 from an autosome-wide scan in an American Indian population. Am J Med Genet 81(3):216–221. doi :10.1002/(SICI)1096-8628(19980508)81:3<216::AID-AJMG2>3.0.CO;2-U

  • Luke A, Wu X, Zhu X, Kan D, Su Y, Cooper R (2003) Linkage for BMI at 3q27 region confirmed in an African-American population. Diabetes 52(5):1284–1287. doi:10.2337/diabetes.52.5.1284

    Article  PubMed  CAS  Google Scholar 

  • Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS et al (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430(7001):743–747. doi:10.1038/nature02797

    Article  PubMed  CAS  Google Scholar 

  • Moslehi R, Goldstein AM, Beerman M, Goldin L, Bergen AW (2003) A genome-wide linkage scan for body mass index on Framingham Heart Study families. BMC Genet 4(suppl 1):S97. doi:10.1186/1471-2156-4-S1-S97

    Article  PubMed  Google Scholar 

  • Palmer LJ, Buxbaum SG, Larkin E, Patel SR, Elston RC, Tishler PV et al (2003) A whole-genome scan for obstructive sleep apnea and obesity. Am J Hum Genet 72(2):340–350. doi:10.1086/346064

    Article  PubMed  CAS  Google Scholar 

  • Pennisi E (2006) Genomics. On your mark. Get set. Sequence! Science 314(5797):232. doi:10.1126/science.314.5797.232

  • Reynisdottir I, Thorleifsson G, Benediktsson R, Sigurdsson G, Emilsson V, Einarsdottir AS et al (2003) Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2. Am J Hum Genet 73(2):323–335. doi:10.1086/377139

    Article  PubMed  CAS  Google Scholar 

  • Roeder K, Bacanu SA, Wasserman L, Devlin B (2006) Using linkage genome scans to improve power of association in genome scans. Am J Hum Genet 78(2):243–252. doi:10.1086/500026

    Article  PubMed  CAS  Google Scholar 

  • Rotimi CN, Comuzzie AG, Lowe WL, Luke A, Blangero J, Cooper RS (1999) The quantitative trait locus on chromosome 2 for serum leptin levels is confirmed in African-Americans. Diabetes 48(3):643–644. doi:10.2337/diabetes.48.3.643

    Article  PubMed  CAS  Google Scholar 

  • Sabater-Lleal M, Chillon M, Howard TE, Gil E, Almasy L, Blangero J et al (2007) Functional analysis of the genetic variability in the F7 gene promoter. Atherosclerosis

  • Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341–1345. doi:10.1126/science.1142382

    Article  PubMed  CAS  Google Scholar 

  • Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881–885. doi:10.1038/nature05616

    Article  PubMed  CAS  Google Scholar 

  • Sobel E, Sengul H, Weeks DE (2001) Multipoint estimation of identity-by-descent probabilities at arbitrary positions among marker loci on general pedigrees. Hum Hered 52(3):121–131. doi:10.1159/000053366

    Article  PubMed  CAS  Google Scholar 

  • Soria JM, Almasy L, Souto JC, Sabater-Lleal M, Fontcuberta J, Blangero J (2005) The F7 gene and clotting factor VII levels: dissection of a human quantitative trait locus. Hum Biol 77(5):561–575. doi:10.1353/hub.2006.0006

    Article  PubMed  Google Scholar 

  • Sun L, Craiu RV, Paterson AD, Bull SB (2006) Stratified false discovery control for large-scale hypothesis testing with application to genome-wide association studies. Genet Epidemiol 30(6):519–530. doi:10.1002/gepi.20164

    Article  PubMed  Google Scholar 

  • Wang T, Elston RC (2005) Two-level Haseman–Elston regression for general pedigree data analysis. Genet Epidemiol 29(1):12–22. doi:10.1002/gepi.20075

    Article  PubMed  CAS  Google Scholar 

  • Williams JT, Blangero J (1999) Power of variance component linkage analysis to detect quantitative trait loci. Ann Hum Genet 63(Pt 6):545–563. doi:10.1046/j.1469-1809.1999.6360545.x

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Cooper RS, Borecki I, Hanis C, Bray M, Lewis CE et al (2002) A combined analysis of genomewide linkage scans for body mass index from the National Heart, Lung, and Blood Institute Family Blood Pressure Program. Am J Hum Genet 70(5):1247–1256. doi:10.1086/340362

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants R01 MH59490, R01 GM31575, U10 AA08403, R01 HL45522, R01 MH78111, and R01 HL070751. Thanks also to the NIH and NSF for travel support to attend ICQG3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Almasy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almasy, L., Blangero, J. Human QTL linkage mapping. Genetica 136, 333–340 (2009). https://doi.org/10.1007/s10709-008-9305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9305-3

Keywords

Navigation