Skip to main content

Comprehensive Automation for NMR Structure Determination of Proteins

  • Protocol
  • First Online:
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 831))

Abstract

This chapter gives an overview of automated protein structure determination by nuclear magnetic resonance (NMR) with the UNIO protocol that enables high to full automation of all NMR data analysis steps involved. Four established algorithms, namely, the MATCH algorithm for sequence-specific resonance assignment, the ASCAN algorithm for side-chain resonance assignment, the CANDID algorithm for NOE assignment, and the ATNOS algorithm for signal identification in NMR spectra, are assembled into three principal UNIO NMR data analysis components (MATCH, ATNOS/ASCAN, and ATNOS/CANDID) that are accessed thanks to a particularly intuitive and flexible, yet powerful graphical user interface (GUI). UNIO is designed to work independently or in association with other NMR software. The principal data analysis components for sequence-specific backbone, side-chain and NOE assignment may be run separately or out of sequence. User-intervention at individual stages is encouraged and facilitated by graphical tools included for the preparation, analysis, validation, and subsequent presentation of the NMR structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billeter, M., Wagner, G., and Wüthrich, K. (2008) Solution NMR structure determination of proteins revisited. J. Biomol. NMR 42, 155–158.

    Article  PubMed  CAS  Google Scholar 

  2. Williamson, M. P., and Craven, C. J. (2009) Automated protein structure calculation from NMR data. J. Biomol. NMR 43, 131–143.

    Article  PubMed  CAS  Google Scholar 

  3. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids. Wiley, New York.

    Google Scholar 

  4. Altieri, A. S., and Byrd, R. A. (2004) Automation of NMR structure determination of proteins. Curr. Opin. Struct. Biol. 14, 547–553.

    Article  PubMed  CAS  Google Scholar 

  5. Baran, M. C., Huang, Y. J., Moseley, H. N. B., and Montelione, G. T. (2004) Automated analysis of protein NMR assignments and structures. Chem. Rev. 104, 3541–3555.

    Article  PubMed  CAS  Google Scholar 

  6. Huang, Y. P. J., Moseley, H. N. B., Baran, M. C., Arrowsmith, C., Powers, R., Tejero, R., et al. (2005) An integrated platform for automated analysis of protein NMR structures. Methods Enzymol. 394, 111–141.

    Article  PubMed  CAS  Google Scholar 

  7. Gronwald, W., and Kalbitzer, H. R. (2004) Automated structure determination of proteins by NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 44, 33–96.

    Article  CAS  Google Scholar 

  8. Güntert, P. (2009) Automated structure determination from NMR spectra. Eur. Biophys. J. 38, 129–143.

    Article  PubMed  Google Scholar 

  9. Kraulis, P. J. (1989) Ansig - a Program for the Assignment of Protein H-1 2d-Nmr Spectra by Interactive Computer-Graphics. J. Magn. Reson. 84, 627–633.

    CAS  Google Scholar 

  10. Johnson, B. A., and Blevins, R. A. (1994) Nmr View - a Computer-Program for the Visualization and Analysis of Nmr Data. J. Biomol. NMR 4, 603–614.

    Article  CAS  Google Scholar 

  11. Bartels, C., Xia, T. H., Billeter, M., Güntert, P., and Wüthrich, K. (1995) The Program Xeasy for Computer-Supported Nmr Spectral-Analysis of Biological Macromolecules. J. Biomol. NMR 6, 1–10.

    Article  CAS  Google Scholar 

  12. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) Nmrpipe - a Multidimensional Spectral Processing System Based on Unix Pipes. J. Biomol. NMR 6, 277–293.

    Article  PubMed  CAS  Google Scholar 

  13. Neidig, K. P., Geyer, M., Gorler, A., Antz, C., Saffrich, R., Beneicke, W., et al. (1995) Aurelia, a Program for Computer-Aided Analysis of Multidimensional Nmr-Spectra. J. Biomol. NMR 6, 255–270.

    Article  CAS  Google Scholar 

  14. Goddard, T. D., and Kneller, D. G. (2001) SPARKY 3. University of Californai, San Francisco.

    Google Scholar 

  15. Keller, R. L. J. (2004) Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance assignment. Ph.D. thesis. Diss. ETH Nr. 15947. ETH Zurich, Zurich, Switzerland.

    Google Scholar 

  16. Kobayashi, N., Iwahara, J., Koshiba, S., Tomizawa, T., Tochio, N., Güntert, P., et al. (2007) KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies. J. Biomol. NMR 39, 31–52.

    Article  PubMed  CAS  Google Scholar 

  17. Mumenthaler, C., Güntert, P., Braun, W., and Wüthrich, K. (1997) Automated combined assignment of NOESY spectra and three-dimensional protein structure determination. J. Biomol. NMR 10, 351–362.

    Article  PubMed  CAS  Google Scholar 

  18. Gronwald, W., Moussa, S., Elsner, R., Jung, A., Ganslmeier, B., Trenner, J., et al. (2002) Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE). J. Biomol. NMR 23, 271–287.

    Article  PubMed  CAS  Google Scholar 

  19. Herrmann, T., Güntert, P., and Wüthrich, K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227.

    Article  PubMed  CAS  Google Scholar 

  20. Linge, J. P., Habeck, M., Rieping, W., and Nilges, M. (2003) ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19, 315–316.

    Article  PubMed  CAS  Google Scholar 

  21. Kuszewski, J., Schwieters, C. D., Garrett, D. S., Byrd, R. A., Tjandra, N., and Clore, G. M. (2004) Completely automated, highly error-tolerant macromolecular structure determination from multidimensional nuclear overhauser enhancement spectra and chemical shift assignments. J. Am. Chem. Soc. 126, 6258–6273.

    Article  PubMed  CAS  Google Scholar 

  22. Huang, Y. J., Tejero, R., Powers, R., and Montelione, G. T. (2006) A topology-constrained distance network algorithm for protein structure determination from NOESY data. Methods Enzymol 62, 587–603.

    CAS  Google Scholar 

  23. Güntert, P. (2003) Automated NMR protein structure calculation. Prog. Nucl. Magn. Reson. Spectrosc. 43, 105–125.

    Article  Google Scholar 

  24. Bernstein, R., Cieslar, C., Ross, A., Oschkinat, H., Freund, J., and Holak, T. A. (1993) Computer-Assisted Assignment of Multidimensional Nmr-Spectra of Proteins - Application to 3d Noesy-Hmqc and Tocsy-Hmqc Spectra. J. Biomol. NMR 3, 245–251.

    Article  CAS  Google Scholar 

  25. Olson, J. B., and Markley, J. L. (1994) Evaluation of an Algorithm for the Automated Sequential Assignment of Protein Backbone Resonances - a Demonstration of the Connectivity Tracing Assignment Tools (Contrast) Software Package. J. Biomol. NMR 4, 385–410.

    Article  PubMed  CAS  Google Scholar 

  26. Lukin, J. A., Gove, A. P., Talukdar, S. N., and Ho, C. (1997) Automated probabilistic method for assigning backbone resonances of (C-13,N-15)-labeled proteins. J. Biomol. NMR 9, 151–166.

    Article  PubMed  CAS  Google Scholar 

  27. Bartels, C., Güntert, P., Billeter, M., and Wüthrich, K. (1997) GARANT - A general algorithm for resonance assignment of ­multidimensional nuclear magnetic resonance spectra. J. Comput. Chem. 18, 139–149.

    Article  CAS  Google Scholar 

  28. Choy, W. Y., Sanctuary, B. C., and Zhu, G. (1997) Using neural network predicted secondary structure information in automatic protein NMR assignment. J. Chem. Inf. Comput. Sci. 37, 1086–1094.

    Article  PubMed  CAS  Google Scholar 

  29. Buchler, N. E. G., Zuiderweg, E. R. P., Wang, H., and Goldstein, R. A. (1997) Protein NMR assignments using mean-field simulated annealing. Biophys. J. 72, Wp447–Wp447.

    Google Scholar 

  30. Croft, D., Kemmink, J., Neidig, K. P., and Oschkinat, H. (1997) Tools for the automated assignment of high-resolution three-dimensional protein NMR spectra based on pattern recognition techniques. J. Biomol. NMR 10, 207–219.

    Article  PubMed  CAS  Google Scholar 

  31. Zimmerman, D. E., Kulikowski, C. A., Huang, Y. P., Feng, W. Q., Tashiro, M., Shimotakahara, S., et al. (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J. Mol. Biol. 269, 592–610.

    Article  PubMed  CAS  Google Scholar 

  32. Gronwald, W., Willard, L., Jellard, T., Boyko, R. E., Rajarathnam, K., Wishart, D. S., et al. (1998) CAMRA: Chemical shift based computer aided protein NMR assignments. J. Biomol. NMR 12, 395–405.

    Article  PubMed  CAS  Google Scholar 

  33. Leutner, M., Gschwind, R. M., Liermann, J., Schwarz, C., Gemmecker, G., and Kessler, H. (1998) Automated backbone assignment of labeled proteins using the threshold accepting algorithm. J. Biomol. NMR 11, 31–43.

    Article  PubMed  CAS  Google Scholar 

  34. Moseley, H. N. B., Monleon, D., and Montelione, G. T. (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Nuc. Magn. Reson. Biol. Macromol. 339, 91–108.

    Article  CAS  Google Scholar 

  35. Coggins, B. E., and Zhou, P. (2003) PACES: Protein sequential assignment by computer-assisted exhaustive search. J. Biomol. NMR 26, 93–111.

    Article  PubMed  CAS  Google Scholar 

  36. Malmodin, D., Papavoine, C. H. M., and Billeter, M. (2003) Fully automated sequence-specific resonance assignments of heteronuclear protein spectra. J. Biomol. NMR 27, 69–79.

    Article  PubMed  CAS  Google Scholar 

  37. Hitchens, T. K., Lukin, J. A., Zhan, Y. P., McCallum, S. A., and Rule, G. S. (2003) MONTE: An automated Monte Carlo based approach to nuclear magnetic resonance assignment of proteins. J. Biomol. NMR 25, 1–9.

    Article  PubMed  CAS  Google Scholar 

  38. Moseley, H. N. B., Riaz, N., Aramini, J. M., Szyperski, T., and Montelione, G. T. (2004) A generalized approach to automated NMR peak list editing: application to reduced dimensionality triple resonance spectra. J. Magn. Reson. 170, 263–277.

    Article  PubMed  CAS  Google Scholar 

  39. Eghbalnia, H. R., Bahrami, A., Wang, L. Y., Assadi, A., and Markley, J. L. (2005) Probabilistic identification of spin systems and their assignments including coil-helix inference as output (PISTACHIO). J. Biomol. NMR 32, 219–233.

    Article  PubMed  CAS  Google Scholar 

  40. Lin, H. N., Wu, K. P., Chang, J. M., Sung, T. Y., and Hsu, W. L. (2005) GANA - a genetic algorithm for NMR backbone resonance assignment. Nucleic Acids Res. 33, 4593–4601.

    Article  PubMed  CAS  Google Scholar 

  41. Masse, J. E., Keller, R., and Pervushin, K. (2006) SideLink: Automated side-chain assignment of biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic. J. Magn. Reson. 181, 45–67.

    Article  PubMed  CAS  Google Scholar 

  42. Masse, J. E., and Keller, R. (2005) AutoLink: Automated sequential resonance assignment of biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic. J. Magn. Reson. 174, 133–151.

    Article  PubMed  CAS  Google Scholar 

  43. Wang, J. Y., Wang, T. Z., Zuiderweg, E. R. P., and Crippen, G. M. (2005) CASA: An efficient automated assignment of protein mainchain NMR data using an ordered tree search algorithm. J. Biomol. NMR 33, 261–279.

    Article  PubMed  CAS  Google Scholar 

  44. Kamisetty, H., Bailey-Kellogg, C., and Pandurangan, G. (2006) An efficient randomized algorithm for contact-based NMR backbone resonance assignment. Bioinformatics 22, 172–180.

    Article  PubMed  CAS  Google Scholar 

  45. Vitek, O., Bailey-Kellogg, C., Craig, B., and Vitek, J. (2006) Inferential backbone assignment for sparse data. J. Biomol. NMR 35, 187–208.

    Article  PubMed  CAS  Google Scholar 

  46. Wu, K. P., Chang, J. M., Chen, J. B., Chang, C. F., Wu, W. J., Huang, T. H., et al. (2006) RIBRA - An error-tolerant algorithm for the NMR backbone assignment problem. J. Comput. Biol. 13, 229–244.

    Article  PubMed  CAS  Google Scholar 

  47. Volk, J., Herrmann, T., and Wüthrich, K. (2008) Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH. J. Biomol. NMR 41, 127–138.

    Article  PubMed  CAS  Google Scholar 

  48. Fiorito, F., Herrmann, T., Damberger, F. F., and Wüthrich, K. (2008) Automated amino acid side-chain NMR assignment of proteins using C-13- and N-15-resolved 3D [H-1,H-1]-NOESY. J. Biomol. NMR 42, 23–33.

    Article  PubMed  CAS  Google Scholar 

  49. Neidig, K. P., Saffrich, R., Lorenz, M., and Kalbitzer, H. R. (1990) Cluster-Analysis and Multiplet Pattern-Recognition in 2-Dimensional Nmr-Spectra. J. Magn. Reson. 89, 543–552.

    CAS  Google Scholar 

  50. Garrett, D. S., Powers, R., Gronenborn, A. M., and Clore, G. M. (1991) A Common-Sense Approach to Peak Picking in 2-Dimensional, 3-Dimensional, and 4-Dimensional Spectra Using Automatic Computer-Analysis of Contour Diagrams. J. Magn. Reson. 95, 214–220.

    CAS  Google Scholar 

  51. Carrara, E. A., Pagliari, F., and Nicolini, C. (1993) Neural Networks for the Peak-Picking of Nuclear-Magnetic-Resonance Spectra. Neural Networks 6, 1023–1032.

    Article  Google Scholar 

  52. Antz, C., Neidig, K. P., and Kalbitzer, H. R. (1995) A General Bayesian Method for an Automated Signal Class Recognition in 2d Nmr-Spectra Combined with a Multivariate Discriminant-Analysis. J. Biomol. NMR 5, 287–296.

    Article  CAS  Google Scholar 

  53. Koradi, R., Billeter, M., Engeli, M., Güntert, P., and Wüthrich, K. (1998) Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. J. Magn. Reson. 135, 288–297.

    Article  PubMed  CAS  Google Scholar 

  54. Herrmann, T., Güntert, P., and Wüthrich, K. (2002) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR 24, 171–189.

    Article  PubMed  CAS  Google Scholar 

  55. Dancea, F., and Gunther, U. (2005) Automated protein NMR structure determination using wavelet de-noised NOESY spectra. J. Biomol. NMR 33, 139–152.

    Article  PubMed  CAS  Google Scholar 

  56. Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Cryst. D 54, 905–921.

    Article  Google Scholar 

  57. Schwieters, C. D., Kuszewski, J. J., Tjandra, N., and Clore, G. M. (2003) The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73.

    Article  PubMed  CAS  Google Scholar 

  58. Güntert, P., Mumenthaler, C., and Wüthrich, K. (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298.

    Article  PubMed  Google Scholar 

  59. Doreleijers, J. F., Mading, S., Maziuk, D., Sojourner, K., Yin, L., Zhu, J., et al. (2003) BioMagResBank database with sets of experimental NMR constraints corresponding to the structures of over 1400 biomolecules deposited in the Protein Data Bank. J. Biomol. NMR 26, 139–146.

    Article  PubMed  CAS  Google Scholar 

  60. Hiller, S., Wider, G., and Wüthrich, K. (2008) APSY-NMR with proteins: practical aspects and backbone assignment. J. Biomol. NMR 42, 179–195.

    Article  PubMed  CAS  Google Scholar 

  61. Hiller, S., Fiorito, F., Wüthrich, K., and Wider, G. (2005) Automated projection spectroscopy (APSY). Proc. Natl. Acad. Sci. USA 102, 10876–10881.

    Article  PubMed  CAS  Google Scholar 

  62. Güntert, P., and Wüthrich, K. (1992) Flatt - a New Procedure for High-Quality Base-Line Correction of Multidimensional Nmr-Spectra. J. Magn. Reson. 96, 403–407.

    Google Scholar 

  63. Nilges, M. (1995) Calculation of Protein Structures with Ambiguous Distance Restraints - Automated Assignment of Ambiguous Noe Crosspeaks and Disulfide Connectivities. J. Mol. Biol. 245, 645–660.

    Article  PubMed  CAS  Google Scholar 

  64. Kuszewski, J. J., Thottungal, R. A., Clore, G. M., and Schwieters, C. D. (2008) Automated error-tolerant macromolecular structure determination from multidimensional nuclear Overhauser enhancement spectra and chemical shift assignments: improved robustness and performance of the PASD algorithm. J. Biomol. NMR 41, 221–239.

    Article  PubMed  CAS  Google Scholar 

  65. Schwieters, C. D., Kuszewski, J. J., and Clore, G. M. (2006) Using Xplor-NIH for NMR molecular structure determination. Prog. Nucl. Magn. Reson. Spectrosc. 48, 47–62.

    Article  CAS  Google Scholar 

  66. Fiorito, F., Hiller, S., Wider, G., and Wüthrich, K. (2006) Automated resonance assignment of proteins: 6D APSY-NMR. J. Biomol. NMR 35, 27–37.

    Article  PubMed  CAS  Google Scholar 

  67. Nilges, M. (1993) A Calculation Strategy for the Structure Determination of Symmetrical Dimers by H-1-Nmr. Proteins 17, 297–309.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Herrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Guerry, P., Herrmann, T. (2012). Comprehensive Automation for NMR Structure Determination of Proteins. In: Shekhtman, A., Burz, D. (eds) Protein NMR Techniques. Methods in Molecular Biology, vol 831. Humana Press. https://doi.org/10.1007/978-1-61779-480-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-480-3_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-479-7

  • Online ISBN: 978-1-61779-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics