Skip to main content

Automated Computational Analysis of Genome-Wide DNA Methylation Profiling Data from HELP-Tagging Assays

  • Protocol
  • First Online:
Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 815))

Abstract

A novel DNA methylation assay, HELP-tagging, has been recently described to use massively parallel sequencing technology for genome-wide methylation profiling. Massively parallel sequencing-based assays such as this produce substantial amounts of data, which complicate analysis and necessitate the use of significant computational resources. To simplify the processing and analysis of HELP-tagging data, a bioinformatic analytical pipeline was developed. Quality checks are performed on the data at various stages, as they are processed by the pipeline to ensure the accuracy of the results. A quantitative methylation score is provided for each locus, along with a confidence score based on the amount of information available for determining the quantification. HELP-tagging analysis results are supplied in standard file formats (BED and WIG) that can be readily examined on the UCSC genome browser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird, A. P., and Wolffe, A. P. (1999) Methylation-induced repression--belts, braces, and chromatin, Cell 99, 451–454.

    Article  PubMed  CAS  Google Scholar 

  2. Li, E., Bestor, T. H., and Jaenisch, R. (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality, Cell 69, 915–926.

    Article  PubMed  CAS  Google Scholar 

  3. Okano, M., Bell, D. W., Haber, D. A., and Li, E. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development, Cell 99, 247–257.

    Article  PubMed  CAS  Google Scholar 

  4. Costello, J. F., Fruhwald, M. C., Smiraglia, D. J., Rush, L. J., Robertson, G. P., Gao, X., Wright, F. A., Feramisco, J. D., Peltomaki, P., Lang, J. C., Schuller, D. E., Yu, L., Bloomfield, C. D., Caligiuri, M. A., Yates, A., Nishikawa, R., Su Huang, H., Petrelli, N. J., Zhang, X., O’Dorisio, M. S., Held, W. A., Cavenee, W. K., and Plass, C. (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns, Nat Genet 24, 132–138.

    Article  PubMed  CAS  Google Scholar 

  5. Greger, V., Passarge, E., Hopping, W., Messmer, E., and Horsthemke, B. (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma, Hum Genet 83, 155–158.

    Article  PubMed  CAS  Google Scholar 

  6. Dobrovic, A., and Simpfendorfer, D. (1997) Methylation of the BRCA1 gene in sporadic breast cancer, Cancer Res 57, 3347–3350.

    PubMed  CAS  Google Scholar 

  7. Gebhard, C., Schwarzfischer, L., Pham, T. H., Schilling, E., Klug, M., Andreesen, R., and Rehli, M. (2006) Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia, Cancer Res 66, 6118–6128.

    Article  PubMed  CAS  Google Scholar 

  8. Akiyama, Y., Watkins, N., Suzuki, H., Jair, K. W., van Engeland, M., Esteller, M., Sakai, H., Ren, C. Y., Yuasa, Y., Herman, J. G., and Baylin, S. B. (2003) GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer, Mol Cell Biol 23, 8429–8439.

    Article  PubMed  CAS  Google Scholar 

  9. Suzuki, M., Sato, S., Arai, Y., Shinohara, T., Tanaka, S., Greally, J. M., Hattori, N., and Shiota, K. (2007) A new class of tissue-specifically methylated regions involving entire CpG islands in the mouse, Genes Cells 12, 1305–1314.

    Article  PubMed  CAS  Google Scholar 

  10. Suzuki, M. M., and Bird, A. (2008) DNA methylation landscapes: provocative insights from epigenomics, Nat Rev Genet 9, 465–476.

    Article  PubMed  CAS  Google Scholar 

  11. Backdahl, L., Herberth, M., Wilson, G., Tate, P., Campos, L. S., Cortese, R., Eckhardt, F., and Beck, S. (2009) Gene body methylation of the dimethylarginine dimethylamino-hydrolase 2 (Ddah2) gene is an epigenetic biomarker for neural stem cell differentiation, Epigenetics 4, 248–254.

    PubMed  CAS  Google Scholar 

  12. Ball, M. P., Li, J. B., Gao, Y., Lee, J. H., LeProust, E. M., Park, I. H., Xie, B., Daley, G. Q., and Church, G. M. (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells, Nat Biotechnol 27, 361–368.

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki, M., Jing, Q., Lia, D., Pascual, M., McLellan, A., and Greally, J. M. (2010) Optimized design and data analysis of tag-based cytosine methylation assays, Genome Biol 11, R36.

    Article  PubMed  Google Scholar 

  14. Illumina. (2010) CASAVA Software Version 1.7 User Guide, Illumina Inc.

    Google Scholar 

  15. Cox, A. J. (unpublished) ELAND: Efficient Local Alignment of Nucleotide Data.

    Google Scholar 

  16. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol 10, R25.

    Article  PubMed  Google Scholar 

  17. Aitchison, J., and Brown, J. A. C. (1957) The lognormal distribution, with special reference to its uses in economics, University Press, Cambridge.

    Google Scholar 

Download references

Acknowledgments

We wish to thank Shahina Maqbool, Raul Olea, and Gael Westby of Einstein’s Epigenomics Shared Facility for their contributions, and Einstein’s Center for Epigenomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Greally .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jing, Q., McLellan, A., Greally, J.M., Suzuki, M. (2012). Automated Computational Analysis of Genome-Wide DNA Methylation Profiling Data from HELP-Tagging Assays. In: Kaufmann, M., Klinger, C. (eds) Functional Genomics. Methods in Molecular Biology, vol 815. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-424-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-424-7_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-423-0

  • Online ISBN: 978-1-61779-424-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics