Skip to main content

Inducible microRNA-Mediated Knockdown of the Endogenous Human Lamin A/C Gene

  • Protocol
  • First Online:
Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 815))

Abstract

RNA interference (RNAi) enables the suppression, and hence the functional analysis, of individual genes. The use of the tetracycline (tet)-controlled transcription activation system for RNAi has become a valuable tool for conditional gene inactivation both in vitro and in vivo. Here, the generation of a conditional RNAi cell line for microRNA (miRNA)-mediated downregulation of the endogenous lamin A/C gene is described. A tet-responsive transcription unit, encoding a designed miRNA against human lamin A/C, is directly placed into a predefined genomic site of our previously developed cell line HeLa-EM2-11ht. This chromosomal locus permits the stringent control of miRNA expression, which results in the precise adjustment of lamin A/C protein concentrations. The utilization of this conditional RNAi system for the controlled inactivation of any gene of interest may significantly contribute to the study of gene functions under highly defined conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gossen M and Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA, 89(12): 5547–5551

    Article  PubMed  CAS  Google Scholar 

  2. Gossen M, Freundlieb S, Bender G, Müller G, Hillen W and Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science, 268(5218): 1766–1769

    Article  PubMed  CAS  Google Scholar 

  3. Wiznerowicz M, Szulc J and Trono D (2006) Tuning silence: conditional systems for RNA interference. Nature Methods, 3(9): 682–688

    Article  PubMed  CAS  Google Scholar 

  4. Weidenfeld I, Gossen M, Löw R, Kentner D, Berger S, Görlich D, Bartsch D, Bujard H and Schönig K (2009) Inducible expression of coding and inhibitory RNAs from retargetable genomic loci. Nucl Acids Res, 37(7): e50

    Article  PubMed  Google Scholar 

  5. Schlake T and Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry, 33(43): 12746–12751

    Article  PubMed  CAS  Google Scholar 

  6. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H and Hillen W (2000) Exploring the sequence space for tetracycline–dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA, 97(14): 7963–7968

    Article  PubMed  CAS  Google Scholar 

  7. Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC and Kain SR (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem, 273(52): 34970–34975

    Article  PubMed  CAS  Google Scholar 

  8. Buchholz F, Angrand PO and Stewart AF (1998) Improved properties of flp recombinase evolved by cycling mutagenesis. Nat Biotechnol, 16(7): 657–662

    Article  PubMed  CAS  Google Scholar 

  9. Berger S, Pesold B, Reber S, Schönig K, Berger A J, Weidenfeld I, Miao J, Berger MR, Gruss OJ and Bartsch D (2010) Quantitative analysis of conditional gene inactivation using rationally designed tetracycline-controlled miRNAs. Nucl Acids Res, 38(17): e168

    Article  PubMed  Google Scholar 

  10. Boden D, Pusch O, Silbermann R, Lee F, Tucker L and Ramratnam B (2004) Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucl Acids Res, 32(3): 1154–1158

    Article  PubMed  CAS  Google Scholar 

  11. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O and Kim S (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956): 415–419

    Article  PubMed  CAS  Google Scholar 

  12. Zeng Y, Wagner EJ and Cullen BR (2002) Both natural and designed miRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell, 9(6): 1327–1333

    Article  PubMed  CAS  Google Scholar 

  13. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836): 494–498

    Article  PubMed  CAS  Google Scholar 

  14. Lund E, Güttinger S, Calado A, Dahlberg JE and Kutay U (2004) Nuclear export of microRNA precursors. Science, 303(5654): 95–98

    Article  PubMed  CAS  Google Scholar 

  15. Schwarz DS, Hutvagner G, Haley B and Zamore PD (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell, 10(3): 537–548

    Article  PubMed  CAS  Google Scholar 

  16. Khvorova A, Reynolds A and Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell, 115(2): 209–216

    Article  PubMed  CAS  Google Scholar 

  17. Wu L, Fan J and Belasco JG (2008) Importance of translation and nonnucleolytic ago proteins for on-target RNA interference. Curr Biol, 18(17): 1327–1332

    Article  PubMed  CAS  Google Scholar 

  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly if the head of bacteriophage T4. Nature, 227(5259): 680–685

    Article  PubMed  CAS  Google Scholar 

  19. Rober RA, Gieseler RK, Peters JH, Weber K and Osborn M (1990) Induction of nuclear lamins a/c inmacrophages in in vitro cultures of rat bone marrow precursor cells and human blood monocytes, and in macrophages elicited in vivo by thioglycollate stimulation. Exp Cell Res, 190(2): 185–194

    Article  PubMed  CAS  Google Scholar 

  20. Hase ME and Cordes VC (2003) Direct interaction with nup153 mediates binding of tpr to the periphery of the nuclear pore complex. Mol Biol Cell, 14(5): 1923–1940

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank the Professors Hermann Bujard and Dirk Görlich as well as Dr. Kai Schönig for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Weidenfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Weidenfeld, I. (2012). Inducible microRNA-Mediated Knockdown of the Endogenous Human Lamin A/C Gene. In: Kaufmann, M., Klinger, C. (eds) Functional Genomics. Methods in Molecular Biology, vol 815. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-424-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-424-7_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-423-0

  • Online ISBN: 978-1-61779-424-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics