Skip to main content

SNAP Display: In Vitro Protein Evolution in Microdroplets

  • Protocol
  • First Online:
Ribosome Display and Related Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 805))

Abstract

SNAP display is based on the covalent reaction of the DNA repair protein AGT (O6-alkylguanine DNA alkyltransferase, the “SNAP-tag”) with its substrate benzylguanine (BG). Linear, BG-labelled template DNA is encapsulated in water-in-oil emulsion droplets with a diameter of a few micrometres (i.e. 1 mL of emulsion contains ∼1010 compartments). Each droplet contains only a single DNA copy, which is transcribed and translated in vitro. The expressed AGT fusion proteins attach to their coding DNA via the BG label inside the droplet, which ensures that a specific genotype–phenotype linkage is established. Subsequently, the emulsion is broken and protein-DNA conjugates, which constitute a DNA-tagged protein library, selected via affinity panning. This method will prove a useful addition to the array of in vitro display systems, distinguished by the stability of DNA as the coding nucleic acid and the covalent link between gene and protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     The SNAP-tag technology was commercialised by Covalys AG in 2007. Since 2009, it is distributed by New England Biolabs.

References

  1. Kaltenbach, M., Schaerli, S., and Hollfelder, F. (2009) Microdroplets – A Tool for Protein Engineering. BIOforum 13, 19–21.

    CAS  Google Scholar 

  2. Miller, O. J., Bernath, K., Agresti, J. J., Amitai, G., Kelly, B. T., Mastrobattista, E., Taly, V., Magdassi, S., Tawfik, D. S., and Griffiths, A. D. (2006) Directed evolution by in vitro compartmentalization. Nature Methods 3, 561–70.

    Article  PubMed  CAS  Google Scholar 

  3. Schaerli, Y., and Hollfelder, F. (2009) The potential of microfluidic water-in-oil droplets in experimental biology. Molecular Biosystems 5, 1392–404.

    Article  PubMed  CAS  Google Scholar 

  4. Tawfik, D. S., and Griffiths, A. D. (1998) Man-made cell-like compartments for molecular evolution. Nature Biotechnology 16, 652–56.

    Article  PubMed  CAS  Google Scholar 

  5. Gronemeyer, T., Godin, G., and Johnsson, K. (2005) Adding value to fusion proteins through covalent labelling. Current Opinion in Biotechnology 16, 453–58.

    Article  PubMed  CAS  Google Scholar 

  6. Keppler, A., Gendreizig, S., Gronemeyer, T., Pick, H., Vogel, H., and Johnsson, K. (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21, 86–9.

    Article  PubMed  CAS  Google Scholar 

  7. Keppler, A., Kindermann, M., Gendreizig, S., Pick, H., Vogel, H., and Johnsson, K. (2004) Labeling of fusion proteins of O-6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods 32, 437–44.

    Article  PubMed  CAS  Google Scholar 

  8. Williams, N. H., Takasaki, B., Wall, M., and Chin, J. (1999) Structure and nuclease activity of simple dinuclear metal complexes: Quantitative dissection of the role of metal ions. Accounts of Chemical Research 32, 485–93.

    Article  CAS  Google Scholar 

  9. Schroeder, G. K., Lad, C., Wyman, P., Williams, N. H., and Wolfenden, R. (2006) The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA. Proceedings of the National Academy of Sciences of the United States of America 103, 4052–55.

    Article  PubMed  CAS  Google Scholar 

  10. Kaltenbach, M., Stein, V., Hollfelder, F. (2011) SNAP Dendrimers: Multivalent Protein Display on Dendrimer-Like DNA for Directed Evolution. Chembiochem 12, 2208–16.

    Google Scholar 

  11. Stein, V., Sielaff, I., Johnsson, K., and Hollfelder, F. (2007) A covalent chemical genotype-phenotype linkage for in vitro protein evolution. Chembiochem 8, 2191–94.

    Article  PubMed  CAS  Google Scholar 

  12. Bertschinger, J., Grabulovski, D., and Neri, D. (2007) Selection of single domain binding proteins by covalent DNA display. Protein Engineering Design & Selection 20, 57–68.

    Article  CAS  Google Scholar 

  13. Bertschinger, J., and Neri, D. (2004) Covalent DNA display as a novel tool for directed evolution of proteins in vitro. Protein Engineering Design & Selection 17, 699–707.

    Article  CAS  Google Scholar 

  14. Doi, N., and Yanagawa, H. (1999) STABLE: protein-DNA fusion system for screening of combinatorial protein libraries in vitro. FEBS Lett 457, 227–30.

    Article  PubMed  CAS  Google Scholar 

  15. Yonezawa, M., Doi, N., Higashinakagawa, T., and Yanagawa, H. (2004) DNA display of biologically active proteins for in vitro protein selection. J Biochem 135, 285–8.

    Article  PubMed  CAS  Google Scholar 

  16. Yonezawa, M., Doi, N., Kawahashi, Y., Higashinakagawa, T., and Yanagawa, H. (2003) DNA display for in vitro selection of diverse peptide libraries. Nucleic Acids Res 31, e118.

    Article  PubMed  Google Scholar 

  17. Stein, V., Sielaff, I., Johnsson, K., and Hollfelder, F. (2007) A covalent chemical genotype-phenotype linkage for in vitro protein evolution. Chembiochem 8, 2191–94.

    Article  PubMed  CAS  Google Scholar 

  18. Juillerat, A., Gronemeyer, T., Keppler, A., Gendreizig, S., Pick, H., Vogel, H., and Johnsson, K. (2003) Directed evolution of O-6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chemistry & Biology 10, 313–17.

    Article  CAS  Google Scholar 

  19. Gronemeyer, T., Chidley, C., Juillerat, A., Heinis, C., and Johnsson, K. (2006) Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Protein Eng Des Sel 19, 309–16.

    Article  PubMed  CAS  Google Scholar 

  20. Juillerat, A., Heinis, C., Sielaff, I., Barnikow, J., Jaccard, H., Kunz, B., Terskikh, A., and Johnsson, K. (2005) Engineering substrate specificity of O-6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells. Chembiochem 6, 1263–69.

    Article  PubMed  CAS  Google Scholar 

  21. Stein, V., and Hollfelder, F. (2009) An efficient method to assemble linear DNA templates for in vitro screening and selection systems. Nucleic Acids Res 37, e122.

    Article  PubMed  Google Scholar 

  22. Stein, V., Kaltenbach, M., and Hollfelder, F. (2011) in “Functional Genomics, Second Edition” (Kaufmann, M., and C., K., Eds.), Humana Press.

    Google Scholar 

  23. Stein, V. (2008) A protein display system based on human O6-alkylguanine alkyltransferase and in vitro compartmentalisation (Doctoral Thesis), Cambridge.

    Google Scholar 

Download references

Acknowledgements

MK was supported by a fellowship from the EU Marie-Curie ITN ProSA. FH is an ERC Starting Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Hollfelder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kaltenbach, M., Hollfelder, F. (2012). SNAP Display: In Vitro Protein Evolution in Microdroplets. In: Douthwaite, J., Jackson, R. (eds) Ribosome Display and Related Technologies. Methods in Molecular Biology, vol 805. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-379-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-379-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-378-3

  • Online ISBN: 978-1-61779-379-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics