Skip to main content

Rapid Selection of High-Affinity Binders Using Ribosome Display

  • Protocol
  • First Online:
Ribosome Display and Related Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 805))

Abstract

Ribosome display has proven to be a powerful in vitro selection and evolution method for generating high-affinity binders from libraries of folded proteins. It has been successfully applied to single-chain Fv fragments of antibodies and alternative scaffolds, such as Designed Ankyrin Repeat Proteins (DARPins). High-affinity binders with new target specificity can be obtained from highly diverse DARPin libraries in only a few selection rounds. In this protocol, the selection from the library and the process of affinity maturation and off-rate selection are explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanes, J. & Plückthun, A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. U S A 94, 4937–4942.

    Article  PubMed  CAS  Google Scholar 

  2. Hanes, J., Jermutus, L., Weber-Bornhauser, S., Bosshard, H. R. & Plückthun, A. (1998) Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc. Natl. Acad. Sci. U S A 95, 14130–14135.

    Article  PubMed  CAS  Google Scholar 

  3. Mattheakis, L. C., Bhatt, R. R. & Dower, W. J. (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. U. S. A. 91, 9022–9026.

    Article  PubMed  CAS  Google Scholar 

  4. Hanes, J., Jermutus, L. & Plückthun, A. (2000) Selecting and evolving functional proteins in vitro by ribosome display. Methods Enzymol. 328, 404–430.

    Article  PubMed  CAS  Google Scholar 

  5. Plückthun, A. (2012) Ribosome Display: a perspective. Methods Mol. Biol. 805, 3–28.

    Google Scholar 

  6. Hanes, J., Schaffitzel, C., Knappik, A. & Plückthun, A. (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18, 1287–1292.

    Article  PubMed  CAS  Google Scholar 

  7. Luginbühl, B., Kanyo, Z., Jones, R. M., Fletterick, R. J., Prusiner, S. B., Cohen, F. E., Williamson, R. A., Burton, D. R. & Plückthun, A. (2006) Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. J. Mol. Biol. 363, 75–97.

    Article  PubMed  Google Scholar 

  8. Zahnd, C., Wyler, E., Schwenk, J. M., Steiner, D., Lawrence, M. C., McKern, N. M., Pecorari, F., Ward, C. W., Joos, T. O. & Plückthun, A. (2007) A designed ankyrin repeat protein evolved to picomolar affinity to Her2. J. Mol. Biol. 369, 1015–1028.

    Article  PubMed  CAS  Google Scholar 

  9. Dreier, B., Mikheeva, G., Belousova, N., Parizek, P., Boczek, E., Jelesarov, I., Forrer, P., Plückthun, A. & Krasnykh, V. (2011) Her2-specific multivalent adapters confer designed tropism to adenovirus for gene targeting. J. Mol. Biol. 405, 410–426.

    Google Scholar 

  10. Stemmer, W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391.

    Article  PubMed  CAS  Google Scholar 

  11. Zaccolo, M., Williams, D. M., Brown, D. M. & Gherardi, E. (1996) An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J. Mol. Biol. 255, 589–603.

    Article  PubMed  CAS  Google Scholar 

  12. Zahnd, C., Spinelli, S., Luginbühl, B., Amstutz, P., Cambillau, C. & Plückthun, A. (2004) Directed in vitro evolution and crystallographic analysis of a peptide binding scFv antibody with low picomolar affinity. J. Biol. Chem. 279, 18870–18877.

    Article  PubMed  CAS  Google Scholar 

  13. Zahnd, C., Sarkar, C. A. & Plückthun, A. (2010) Computational analysis of off-rate selection experiments to optimize affinity maturation by directed evolution. Protein Eng. Des. Sel. 23, 175–184.

    Article  PubMed  CAS  Google Scholar 

  14. Schaffitzel, C., Zahnd, C., Amstutz, P., Luginbühl, B. & Plückthun, A. (2001). In vitro selection and evolution of protein-ligand interactions by ribosome display. In Protein-Protein Interactions, A Molecular Cloning Manual (Golemis, E., ed.), pp. 535–567. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  15. Schaffitzel, C., Zahnd, C., Amstutz, P., Luginbühl, B. & Plückthun, A. (2005). In vitro selection and evolution of protein-ligand interactions by ribosome display. In Protein-protein interactions: A molecular cloning manual 2nd edit. (Golemis, E. & Adams, P., eds.), pp. 517–548. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  16. Dreier, B. & Plückthun, A. (2010) Ribosome Display, a technology for selecting and evolving proteins from large libraries. Methods Mol. Biol. 687, 283–306.

    Article  Google Scholar 

  17. Binz, H. K., Stumpp, M. T., Forrer, P., Amstutz, P. & Plückthun, A. (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332, 489–503.

    Article  PubMed  CAS  Google Scholar 

  18. Binz, H. K., Amstutz, P., Kohl, A., Stumpp, M. T., Briand, C., Forrer, P., Grütter, M. G. & Plückthun, A. (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol. 22, 575–582.

    Article  PubMed  CAS  Google Scholar 

  19. Amstutz, P., Binz, H. K., Parizek, P., Stumpp, M. T., Kohl, A., Grütter, M. G., Forrer, P. & Plückthun, A. (2005) Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J. Biol. Chem. 280, 24715–24722.

    Article  PubMed  CAS  Google Scholar 

  20. Zahnd, C., Pécorari, F., Straumann, N., Wyler, E. & Plückthun, A. (2006) Selection and characterization of Her2 binding-designed ankyrin repeat proteins. J. Biol. Chem. 281, 35167–35175.

    Article  PubMed  CAS  Google Scholar 

  21. Schweizer, A., Roschitzki-Voser, H., Amstutz, P., Briand, C., Gulotti-Georgieva, M., Prenosil, E., Binz, H. K., Capitani, G., Baici, A., Plückthun, A. & Grütter, M. G. (2007) Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism. Structure 15, 625–636.

    Article  PubMed  CAS  Google Scholar 

  22. Huber, T., Steiner, D., Röthlisberger, D. & Plückthun, A. (2007) In vitro selection and characterization of DARPins and Fab fragments for the co-crystallization of membrane proteins: The Na(+)-citrate symporter CitS as an example. J. Struct. Biol. 159, 206–221.

    Article  PubMed  CAS  Google Scholar 

  23. Veesler, D., Dreier, B., Blangy, S., Lichière, J., Tremblay, D., Moineau, S., Spinelli, S., Tegoni, M., Plückthun, A., Campanacci, V. & Cambillau, C. (2009) Crystal structure of a DARPin neutralizing inhibitor of lactococcal phage TP901-1: comparison of DARPin and camelid VHH binding mode J. Biol. Chem. 384, 30718–30726.

    Google Scholar 

  24. Schatz, P. J. (1993) Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology (N. Y.) 11, 1138–1143.

    Google Scholar 

  25. Wade, H. E. & Robinson, H. K. (1966) Magnesium ion-independent ribonucleic acid depolymerases in bacteria. Biochem. J. 101, 467–479.

    PubMed  CAS  Google Scholar 

  26. Laminet, A. A. & Plückthun, A. (1989) The precursor of b-lactamase: Purification, properties and folding kinetics. EMBO J. 8, 1469–1477.

    PubMed  CAS  Google Scholar 

  27. O’Callaghan, C. H., Morris, A., Kirby, S. M. & Shingler, A. H. (1972) Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob. Agents Chemother. 1, 283–288.

    PubMed  Google Scholar 

  28. Steiner, D., Forrer, P. & Plückthun, A. (2008) Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J. Mol. Biol. 382, 1211–1227.

    Article  PubMed  CAS  Google Scholar 

  29. Zahnd, C., Amstutz, P. & Plückthun, A. (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat. Methods 4, 269–279.

    Article  PubMed  CAS  Google Scholar 

  30. Hajnsdorf, E., Braun, F., Haugel-Nielsen, J., Le Derout, J. & Regnier, P. (1996) Multiple degradation pathways of the rpsO mRNA of Escherichia coli. RNase E interacts with the 5′ and 3′ extremities of the primary transcript. Biochimie 78, 416–424.

    Article  PubMed  CAS  Google Scholar 

  31. Amstutz, P., Binz, H. K., Zahnd, C. & Plückthun, A. (2006). Ribosome Display: In Vitro Selection of Protein-Protein Interactions. In Cell Biology – A Laboratory Handbook 3rd edit. (Celis, J., ed.), Vol. 1, pp. 497–509. 4 vols. Elsevier Academic Press.

    Google Scholar 

  32. Chen, H. Z. & Zubay, G. (1983) Prokaryotic coupled transcription-translation. Methods Enzymol. 101, 674–690.

    CAS  Google Scholar 

  33. Pratt, J. M. (1984). Coupled transcription-translation in prokaryotic cell-free systems. In Current Protocols (Hemes, B. D. & Higgins, S. J., eds.), pp. 179–209. IRL Press, Oxford.

    Google Scholar 

  34. Kushner, S. R. (2002) mRNA decay in Escherichia coli comes of age. J. Bacteriol. 184, 4658–4665; discussion 4657.

    Google Scholar 

  35. Jermutus, L., Honegger, A., Schwesinger, F., Hanes, J. & Plückthun, A. (2001) Tailoring in vitro evolution for protein affinity or stability. Proc. Natl. Acad. Sci. U.S.A. 98, 75–80.

    Article  PubMed  CAS  Google Scholar 

  36. Hawkins, R. E., Russell, S. J. & Winter, G. (1992) Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226, 889–896.

    CAS  Google Scholar 

  37. Yang, W. P., Green, K., Pinz-Sweeney, S., Briones, A. T., Burton, D. R. & Barbas, C. F., 3rd. (1995) CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254, 392–403.

    Article  PubMed  CAS  Google Scholar 

  38. Sambrook, J. & Russel, D. W. (2001). Molecular cloning: A laboratory handbook. 3rd edit, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  39. Willuda, J., Honegger, A., Waibel, R., Schubiger, P. A., Stahel, R., Zangemeister-Wittke, U. & Plückthun, A. (1999) High thermal stability is essential for tumor targeting of antibody fragments: Engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res. 59, 5758–5767.

    PubMed  CAS  Google Scholar 

  40. Wörn, A. & Plückthun, A. (2001) Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305, 989–1010.

    Article  PubMed  Google Scholar 

  41. Proba, K., Wörn, A., Honegger, A. & Plückthun, A. (1998) Antibody scFv fragments without disulfide bonds made by molecular evolution. J. Mol. Biol. 275, 245–253.

    Article  PubMed  CAS  Google Scholar 

  42. Chames, P. & Baty, D. (2000) Antibody engineering and its applications in tumor targeting and intracellular immunization. FEMS Microbiol. Lett. 189, 1–8.

    Article  PubMed  CAS  Google Scholar 

  43. Honegger, A., Malebranche, A. D., Röthlisberger, D. & Plückthun, A. (2009) The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains. Protein Eng. Des. Sel. 22, 121–134.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank many former and current members of the Plückthun laboratory, mentioned in the references, for establishing and continuously optimizing the ribosome display protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Plückthun .

Editor information

Editors and Affiliations

Additional information

Support

Work on ribosome display was supported by the Swiss National Science Foundation.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dreier, B., Plückthun, A. (2012). Rapid Selection of High-Affinity Binders Using Ribosome Display. In: Douthwaite, J., Jackson, R. (eds) Ribosome Display and Related Technologies. Methods in Molecular Biology, vol 805. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-379-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-379-0_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-378-3

  • Online ISBN: 978-1-61779-379-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics