Skip to main content

A Critical Evaluation of Correlated Mutation Algorithms and Coevolution Within Allosteric Mechanisms

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 796))

Abstract

The notion of using the evolutionary history encoded within multiple sequence alignments to predict allosteric mechanisms is appealing. In this approach, correlated mutations are expected to reflect coordinated changes that maintain intramolecular coupling between residue pairs. Despite much early fanfare, the general suitability of correlated mutations to predict allosteric couplings has not yet been established. Lack of progress along these lines has been hindered by several algorithmic limitations including phylogenetic artifacts within alignments masking true covariance and the computational intractability of consideration of more than two correlated residues at a time. Recent progress in algorithm development, however, has been substantial with a new generation of correlated mutation algorithms that have made fundamental progress toward solving these difficult problems. Despite these encouraging results, there remains little evidence to suggest that the evolutionary constraints acting on allosteric couplings are sufficient to be recovered from multiple sequence alignments. In this review, we argue that due to the exquisite sensitivity of protein dynamics, and hence that of allosteric mechanisms, the latter vary widely within protein families. If it turns out to be generally true that even very similar homologs display a wide divergence of allosteric mechanisms, then even a perfect correlated mutation algorithm could not be reliably used as a general mechanism for discovery of allosteric pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horovitz, A., Bochkareva, E. S., Yifrach, O., and Girshovich, A. S. (1994). Prediction of an inter-residue interaction in the chaperonin GroEL from multiple sequence alignment is confirmed by double-mutant cycle analysis. J Mol Biol 238, 133–8.

    Article  PubMed  CAS  Google Scholar 

  2. Lockless, S. W., and Ranganathan, R. (1999). Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–9.

    Article  PubMed  CAS  Google Scholar 

  3. Fodor, A. A., and Aldrich, R. W. (2004). On evolutionary conservation of thermodynamic coupling in proteins. J Biol Chem 279, 19046–50.

    Article  PubMed  CAS  Google Scholar 

  4. Chi, C. N., Elfstrom, L., Shi, Y., Snall, T., Engstrom, A., and Jemth, P. (2008). Reassessing a sparse energetic network within a single protein domain. Proc Natl Acad Sci U S A 105, 4679–84.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, Z., Chen, J., and Thirumalai, D. (2009). On the accuracy of inferring energetic coupling between distant sites in protein families from evolutionary imprints: illustrations using lattice model. Proteins 77, 823–31.

    Article  PubMed  CAS  Google Scholar 

  6. Jensen, R. A., and Stenmark, S. L. (1970). Comparative allostery of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthetase as a molecular basis for classification. J Bacteriol 101, 763–9.

    PubMed  CAS  Google Scholar 

  7. Jensen, A. A., and Spalding, T. A. (2004). Allosteric modulation of G-protein coupled receptors. Eur J Pharm Sci 21, 407–20.

    Article  PubMed  CAS  Google Scholar 

  8. May, L. T., Avlani, V. A., Sexton, P. M., and Christopoulos, A. (2004). Allosteric modulation of G protein-coupled receptors. Curr Pharm Des 10, 2003–13.

    Article  PubMed  CAS  Google Scholar 

  9. Hudson, J. W., Golding, G. B., and Crerar, M. M. (1993). Evolution of allosteric control in glycogen phosphorylase. J Mol Biol 234, 700–21.

    Article  PubMed  CAS  Google Scholar 

  10. Royer, W. E., Jr., Knapp, J. E., Strand, K., and Heaslet, H. A. (2001). Cooperative hemoglobins: conserved fold, diverse quaternary assemblies and allosteric mechanisms. Trends Biochem Sci 26, 297–304.

    Article  PubMed  CAS  Google Scholar 

  11. Royer, W. E., Jr., Zhu, H., Gorr, T. A., Flores, J. F., and Knapp, J. E. (2005). Allosteric hemoglobin assembly: diversity and similarity. J Biol Chem 280, 27477–80.

    Article  PubMed  CAS  Google Scholar 

  12. Chakrabarti, S., and Panchenko, A. R. (2009). Coevolution in defining the functional specificity. Proteins 75, 231–40.

    Article  PubMed  CAS  Google Scholar 

  13. del Sol, A., Tsai, C. J., Ma, B., and Nussinov, R. (2009). The origin of allosteric functional modulation: multiple pre-existing pathways. Structure 17, 1042–50.

    Article  PubMed  Google Scholar 

  14. Cui, Q., and Karplus, M. (2008). Allostery and cooperativity revisited. Protein Sci 17, 1295–307.

    Article  PubMed  CAS  Google Scholar 

  15. Formaneck, M. S., Ma, L., and Cui, Q. (2006). Reconciling the “old” and “new” views of protein allostery: a molecular simulation study of chemotaxis Y protein (CheY). Proteins 63, 846–67.

    Article  PubMed  CAS  Google Scholar 

  16. Ashkenazy, H., and Kliger, Y. Reducing phylogenetic bias in correlated mutation analysis. Protein Eng Des Sel 23, 321–6.

    Google Scholar 

  17. Fodor, A. A., and Aldrich, R. W. (2004). Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins 56, 211–21.

    Article  PubMed  CAS  Google Scholar 

  18. Wollenberg, K. R., and Atchley, W. R. (2000). Separation of phylogenetic and functional associations in biological sequences by using the parametric bootstrap. Proc Natl Acad Sci U S A 97, 3288–91.

    Article  PubMed  CAS  Google Scholar 

  19. Noivirt, O., Eisenstein, M., and Horovitz, A. (2005). Detection and reduction of evolutionary noise in correlated mutation analysis. Protein Eng Des Sel 18, 247–53.

    Article  PubMed  CAS  Google Scholar 

  20. Dimmic, M. W., Hubisz, M. J., Bustamante, C. D., and Nielsen, R. (2005). Detecting coevolving amino acid sites using Bayesian mutational mapping. Bioinformatics 21 Suppl 1, i126-35.

    Article  PubMed  CAS  Google Scholar 

  21. Dutheil, J., Pupko, T., Jean-Marie, A., and Galtier, N. (2005). A model-based approach for detecting coevolving positions in a molecule. Mol Biol Evol 22, 1919–28.

    Article  PubMed  CAS  Google Scholar 

  22. Ashkenazy, H., Unger, R., and Kliger, Y. (2009). Optimal data collection for correlated mutation analysis. Proteins 74, 545–55.

    Article  PubMed  CAS  Google Scholar 

  23. Vicatos, S., Reddy, B. V., and Kaznessis, Y. (2005). Prediction of distant residue contacts with the use of evolutionary information. Proteins 58, 935–49.

    Article  PubMed  CAS  Google Scholar 

  24. Kundrotas, P. J., and Alexov, E. G. (2006). Predicting residue contacts using pragmatic correlated mutations method: reducing the false positives. BMC Bioinformatics 7, 503.

    Article  PubMed  Google Scholar 

  25. Dunn, S. D., Wahl, L. M., and Gloor, G. B. (2008). Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics 24, 333–40.

    Article  PubMed  CAS  Google Scholar 

  26. Dickson, R. J., Wahl, L. M., Fernandes, A. D., and Gloor, G. B. (2010). Identifying and Seeing beyond Multiple Sequence Alignment Errors Using Intra-Molecular Protein Covariation. PLoS One 5, e11082.

    Article  PubMed  Google Scholar 

  27. Little, D. Y., and Chen, L. (2009). Identification of coevolving residues and coevolution potentials emphasizing structure, bond formation and catalytic coordination in protein evolution. PLoS One 4, e4762.

    Article  PubMed  Google Scholar 

  28. Edgar, R. C., and Batzoglou, S. (2006). Multiple sequence alignment. Curr Opin Struct Biol 16, 368–73.

    Article  PubMed  CAS  Google Scholar 

  29. Martin, L. C., Gloor, G. B., Dunn, S. D., and Wahl, L. M. (2005). Using information theory to search for co-evolving residues in proteins. Bioinformatics 21, 4116–24.

    Article  PubMed  CAS  Google Scholar 

  30. Weil, P., Hoffgaard, F., and Hamacher, K. (2009). Estimating sufficient statistics in co-evolutionary analysis by mutual information. Comput Biol Chem 33, 440–4.

    Article  PubMed  CAS  Google Scholar 

  31. Buslje, C. M., Santos, J., Delfino, J. M., and Nielsen, M. (2009). Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information. Bioinformatics 25, 1125–31.

    Article  PubMed  CAS  Google Scholar 

  32. Fernandes, A. D., and Gloor, G. B. Mutual information is critically dependent on prior assumptions: would the correct estimate of mutual information please identify itself? Bioinformatics 26, 1135–9.

    Google Scholar 

  33. Brown, C. A., and Brown, K. S. Validation of coevolving residue algorithms via pipeline sensitivity analysis: ELSC and OMES and ZNMI, oh my! PLoS One 5, e10779.

    Google Scholar 

  34. Burger, L., and van Nimwegen, E. Disentangling direct from indirect co-evolution of residues in protein alignments. PLoS Comput Biol 6, e1000633.

    Google Scholar 

  35. Weigt, M., White, R. A., Szurmant, H., Hoch, J. A., and Hwa, T. (2009). Identification of direct residue contacts in protein-protein interaction by message passing. Proc Natl Acad Sci U S A 106, 67–72.

    Article  PubMed  CAS  Google Scholar 

  36. Gobel, U., Sander, C., Schneider, R., and Valencia, A. (1994). Correlated mutations and residue contacts in proteins. Proteins 18, 309–17.

    Article  PubMed  CAS  Google Scholar 

  37. Clarke, N. D. (1995). Covariation of residues in the homeodomain sequence family. Protein Sci 4, 2269–78.

    Article  PubMed  CAS  Google Scholar 

  38. Mildvan, A. S., Weber, D. J., and Kuliopulos, A. (1992). Quantitative interpretations of double mutations of enzymes. Arch Biochem Biophys 294, 327–40.

    Article  PubMed  CAS  Google Scholar 

  39. Gloor, G. B., Martin, L. C., Wahl, L. M., and Dunn, S. D. (2005). Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions. Biochemistry 44, 7156–65.

    Article  PubMed  CAS  Google Scholar 

  40. Istomin, A. Y., Gromiha, M. M., Vorov, O. K., Jacobs, D. J., and Livesay, D. R. (2008). New insight into long-range nonadditivity within protein double-mutant cycles. Proteins 70, 915–24.

    Article  PubMed  CAS  Google Scholar 

  41. Suel, G. M., Lockless, S. W., Wall, M. A., and Ranganathan, R. (2003). Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Biol 10, 59–69.

    Article  PubMed  Google Scholar 

  42. Halabi, N., Rivoire, O., Leibler, S., and Ranganathan, R. (2009). Protein sectors: evolutionary units of three-dimensional structure. Cell 138, 774–86.

    Article  PubMed  CAS  Google Scholar 

  43. Kuriyan, J., and Eisenberg, D. (2007). The origin of protein interactions and allostery in colocalization. Nature 450, 983–90.

    Article  PubMed  CAS  Google Scholar 

  44. Fenton, A. W. (2008). Allostery: an illustrated definition for the ‘second secret of life’. Trends Biochem Sci 33, 420–5.

    Article  PubMed  CAS  Google Scholar 

  45. Koshland, D. E. (1958). Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci U S A 44, 98–104.

    Article  PubMed  CAS  Google Scholar 

  46. Yu, E. W., and Koshland, D. E., Jr. (2001). Propagating conformational changes over long (and short) distances in proteins. Proc Natl Acad Sci U S A 98, 9517–20.

    Article  PubMed  CAS  Google Scholar 

  47. Ottemann, K. M., Xiao, W., Shin, Y. K., and Koshland, D. E., Jr. (1999). A piston model for transmembrane signaling of the aspartate receptor. Science 285, 1751–4.

    Article  PubMed  CAS  Google Scholar 

  48. Swain, J. F., and Gierasch, L. M. (2006). The changing landscape of protein allostery. Curr Opin Struct Biol 16, 102–8.

    Article  PubMed  CAS  Google Scholar 

  49. Kumar, S., Ma, B., Tsai, C. J., Sinha, N., and Nussinov, R. (2000). Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci 9, 10–9.

    Article  PubMed  CAS  Google Scholar 

  50. Monod, J., Wyman, J., and Changeux, J. P. (1965). On the Nature of Allosteric Transitions: a Plausible Model. J Mol Biol 12, 88–118.

    Article  PubMed  CAS  Google Scholar 

  51. Gunasekaran, K., Ma, B., and Nussinov, R. (2004). Is allostery an intrinsic property of all dynamic proteins? Proteins 57, 433–43.

    Article  PubMed  CAS  Google Scholar 

  52. Bruschweiler, S., Schanda, P., Kloiber, K., Brutscher, B., Kontaxis, G., Konrat, R., and Tollinger, M. (2009). Direct observation of the dynamic process underlying allosteric signal transmission. J Am Chem Soc 131, 3063–8.

    Article  PubMed  CAS  Google Scholar 

  53. Schlegel, J., Armstrong, G. S., Redzic, J. S., Zhang, F., and Eisenmesser, E. Z. (2009). Characterizing and controlling the inherent dynamics of cyclophilin-A. Protein Sci 18, 811–24.

    PubMed  CAS  Google Scholar 

  54. Lee, A. L., Kinnear, S. A., and Wand, A. J. (2000). Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat Struct Biol 7, 72–7.

    Article  PubMed  CAS  Google Scholar 

  55. Mau, T., Baleja, J. D., and Wagner, G. (1992). Effects of DNA binding and metal substitution on the dynamics of the GAL4 DNA-binding domain as studied by amide proton exchange. Protein Sci 1, 1403–12.

    Article  PubMed  CAS  Google Scholar 

  56. Forman, B. M., Umesono, K., Chen, J., and Evans, R. M. (1995). Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell 81, 541–50.

    Article  PubMed  CAS  Google Scholar 

  57. Conigrave, A. D., and Franks, A. H. (2003). Allosteric activation of plasma membrane receptors--physiological implications and structural origins. Prog Biophys Mol Biol 81, 219–40.

    Article  PubMed  CAS  Google Scholar 

  58. Hardy, J. A., and Wells, J. A. (2004). Searching for new allosteric sites in enzymes. Curr Opin Struct Biol 14, 706–15.

    Article  PubMed  CAS  Google Scholar 

  59. Pendergrass, D. C., Williams, R., Blair, J. B., and Fenton, A. W. (2006). Mining for allosteric information: natural mutations and positional sequence conservation in pyruvate kinase. IUBMB Life 58, 31–8.

    Article  PubMed  CAS  Google Scholar 

  60. Fodor, A. A., Black, K. D., and Zagotta, W. N. (1997). Tetracaine reports a conformational change in the pore of cyclic nucleotide-gated channels. J Gen Physiol 110, 591–600.

    Article  PubMed  CAS  Google Scholar 

  61. Mottonen, J.M., Jacobs, D. J., and Livesay, D. R. (2010). Allosteric response is both conserved and variable across three CheY orthologs. Biophys J 99, 2245–2254.

    Article  PubMed  CAS  Google Scholar 

  62. Whitaker, R. J., Byng, G. S., Gherna, R. L., and Jensen, R. A. (1981). Comparative allostery of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase as an indicator of taxonomic relatedness in pseudomonad genera. J Bacteriol 145, 752–9.

    PubMed  CAS  Google Scholar 

  63. Jensen, R. A., and Twarog, R. (1972). Allostery of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase in Clostridium: another conserved generic characteristic. J Bacteriol 111, 641–8.

    PubMed  CAS  Google Scholar 

  64. Halperin, I., Wolfson, H., and Nussinov, R. (2006). Correlated mutations: advances and limitations. A study on fusion proteins and on the Cohesin-Dockerin families. Proteins 63, 832–45.

    Article  PubMed  CAS  Google Scholar 

  65. McLachlan, A. D. (1971). Tests for comparing related amino-acid sequences. Cytochrome c and cytochrome c 551. J Mol Biol 61, 409–24.

    Article  PubMed  CAS  Google Scholar 

  66. Atchley, W. R., Wollenberg, K. R., Fitch, W. M., Terhalle, W., and Dress, A. W. (2000). Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis. Mol Biol Evol 17, 164–78.

    PubMed  CAS  Google Scholar 

  67. Hatley, M. E., Lockless, S. W., Gibson, S. K., Gilman, A. G., and Ranganathan, R. (2003). Allosteric determinants in guanine nucleotide-binding proteins. Proc Natl Acad Sci U S A 100, 14445–50.

    Article  PubMed  CAS  Google Scholar 

  68. Kass, I., and Horovitz, A. (2002). Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins 48, 611–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Richard W. Aldrich and Gregory B. Gloor for helpful comments on the manuscript, and Donald J. Jacobs for numerous insightful discussions related to the correlated mutation algorithms, allostery, and the relationships therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Fodor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Livesay, D.R., Kreth, K.E., Fodor, A.A. (2012). A Critical Evaluation of Correlated Mutation Algorithms and Coevolution Within Allosteric Mechanisms. In: Fenton, A. (eds) Allostery. Methods in Molecular Biology, vol 796. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-334-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-334-9_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-333-2

  • Online ISBN: 978-1-61779-334-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics