Skip to main content

Hydrogen–Deuterium Exchange Study of an Allosteric Energy Cycle

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 796))

Abstract

Elucidation of mechanisms of energy transduction through macromolecules in allosteric systems requires application of a broad range of techniques and approaches. High-resolution structures of the end states in an allosteric system provide invaluable clues about allosteric mechanism. Thermodynamic and kinetic studies reveal the rules that govern the transitions between states in the system. Acquisition of detailed molecular level information about allosteric mechanism requires interrogation of the structural and dynamic properties of both intermediates and end states in the allosteric cycle. Many experimental and computational tools have been developed to probe allostery. Among these are hydrogen–deuterium exchange detected by either NMR spectroscopy or mass spectrometry. This article provides a detailed description of application of hydrogen exchange detected by mass spectrometry (HDX-MS) to investigate an allosteric system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Cera, E. (2009) Serine proteases, IUBMB Life 61, 510–515.

    Article  PubMed  Google Scholar 

  2. Swint-Kruse, L., and Matthews, K. S. (2009) Allostery in the LacI/GalR family: variations on a theme, Curr Opin Microbiol 12, 129–137.

    Article  PubMed  CAS  Google Scholar 

  3. Kenakin, T. P. (2009) '7TM receptor allostery: putting numbers to shapeshifting proteins, Trends Pharmacol Sci 30, 460–469.

    Article  PubMed  CAS  Google Scholar 

  4. Yifrach, O., and Horovitz, A. (1995) Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL, Biochemistry 34, 5303–5308.

    Article  PubMed  CAS  Google Scholar 

  5. Englander, S. W., and Englander, J. J. (1994) Structure and energy change in hemoglobin by hydrogen exchange labeling, Methods Enzymol 232, 26–42.

    Article  PubMed  CAS  Google Scholar 

  6. Englander, S. W. (2006) Hydrogen exchange and mass spectrometry: A historical perspective, J Am Soc Mass Spectrom 17, 1481–1489.

    Article  PubMed  CAS  Google Scholar 

  7. Barker, D. F., and Campbell, A. M. (1981) The birA gene of Escherichia coli encodes a biotin holoenzyme synthetase, J. Mol. Biol 146, 451–467.

    Article  PubMed  CAS  Google Scholar 

  8. Barker, D. F., and Campbell, A. M. (1981) Genetic and biochemical characterization of the birA gene and its product: evidence for a direct role of biotin holoenzyme synthetase in repression of the biotin operon in Escherichia coli, J Mol Biol 146, 469–492.

    Article  PubMed  CAS  Google Scholar 

  9. Cronan, J. E., Jr. (1989) The E. coli bio operon:transcriptional repression by an essential protein modification enzyme., Cell 58, 427–429.

    Article  PubMed  CAS  Google Scholar 

  10. Eisenstein, E., and Beckett, D. (1999) Dimerization of the Escherichia coli biotin repressor:corepressor function in protein assembly., Biochemistry 38, 13077–13084.

    Article  PubMed  CAS  Google Scholar 

  11. Streaker, E. D., Gupta, A., and Beckett, D. (2002) Th biotin repressor: thermodynamic coupling of corepressor binding, protein assembly, and sequence-specific DNA binding., Biochemistry 41, 14263–14271.

    Article  PubMed  CAS  Google Scholar 

  12. Streaker, E. D., and Beckett, D. (2003) Coupling of protein assembly and DNA binding:biotin repressor dimerization precedes biotin operator binding., J. Mol. Biol 325, 937–948.

    CAS  Google Scholar 

  13. Xu, Y., Johnson, C. R., and Beckett, D. (1996) Thermodynamic analysis of small ligand binding to the Escherichia coli repressor of biotin biosynthesis, Biochemistry 35, 5509–5517.

    Article  PubMed  CAS  Google Scholar 

  14. Brown, P. H., and Beckett, D. (2005) Use of binding enthalpy to drive an allosteric transition, Biochemistry 44, 3112–3121.

    Article  PubMed  CAS  Google Scholar 

  15. Brown, P., Cronan, J.E., Grotli, M., and Beckett, D. (2004) The biotin repressor: Modulation of allostery by corepressor analogs., J. Mol. Biol 337, 857–869.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang, Z., and Smith, D. L. (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation, Protein Sci 2, 522–531.

    Article  PubMed  CAS  Google Scholar 

  17. Mandell, J. G., Falick, A. M., and Komives, E. A. (1998) Measurement of amide hydrogen exchange by MALDI-TOF mass spectrometry, Anal Chem 70, 3987–3995.

    Article  PubMed  CAS  Google Scholar 

  18. Hoofnagle, A. N., Resing, K. A., and Ahn, N. G. (2004) Practical methods for deuterium exchange/mass spectrometry, Methods Mol Biol 250, 283–298.

    PubMed  CAS  Google Scholar 

  19. Brown, P. H., Cronan, J. E., Grotli, M., and Beckett, D. (2004) The biotin repressor: modulation of allostery by corepressor analogs, J Mol Biol 337, 857–869.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, Z. MAG-TRAN, Amgen, Inc., Thousand Oaks, CA.

    Google Scholar 

  21. Hoofnagle, A. N., Resing, K. A., and Ahn, N. G. (2003) Protein analysis by hydrogen exchange mass spectrometry, Annu Rev Biophys Biomol Struct 32, 1–25.

    Article  PubMed  CAS  Google Scholar 

  22. Resing, K. A., and Ahn, N. G. (1998) Deuterium exchange mass spectrometry as a probe of protein kinase activation. Analysis of wild-type and constitutively active mutants of MAP kinase kinase-1, Biochemistry 37, 463–475.

    Article  PubMed  CAS  Google Scholar 

  23. Wilson, K. P., Shewchuk, L. M., Brennan, R. G., Otsuka, A. J., and Matthews, B. W. (1992) Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains, Proc Natl Acad Sci USA 89, 9257–9261.

    Article  PubMed  CAS  Google Scholar 

  24. Weaver, L. H., Kwon, K., Beckett, D., and Matthews, B. W. (2001) Corepressor-induced organization and assembly of the biotin repressor: a model for allosteric activation of a transcriptional regulator, Proc Natl Acad Sci USA 98, 6045–6050.

    Article  PubMed  CAS  Google Scholar 

  25. Wood, Z. A., Weaver, L. H., Brown, P. H., Beckett, D., and Matthews, B. W. (2006) Co-repressor induced order and biotin repressor dimerization: a case for divergent followed by convergent evolution, J Mol Biol 357, 509–523.

    Article  PubMed  CAS  Google Scholar 

  26. Laine, O., Streaker, E. D., Nabavi, M., Fenselau, C. C., and Beckett, D. (2008) Allosteric signaling in the biotin repressor occurs via local folding coupled to global dampening of protein dynamics, J Mol Biol 381, 89–101.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy Beckett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Beckett, D. (2012). Hydrogen–Deuterium Exchange Study of an Allosteric Energy Cycle. In: Fenton, A. (eds) Allostery. Methods in Molecular Biology, vol 796. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-334-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-334-9_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-333-2

  • Online ISBN: 978-1-61779-334-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics