Skip to main content

Studying Interactions Between Chloroplast Proteins in Intact Plant Cells Using Bimolecular Fluorescence Complementation and Förster Resonance Energy Transfer

  • Protocol
  • First Online:
Chloroplast Research in Arabidopsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 775))

Abstract

Protein–protein interactions play crucial roles in the execution of many cellular functions, including those in plastids. Identifying and characterising protein–protein interactions can yield valuable information regarding the function of a protein and can also contribute towards understanding protein–protein interaction networks in plastids, thereby contributing to a better understanding of cellular processes. Here, we describe the planning and experimental procedures required to perform both bimolecular fluorescence complementation and Förster resonance energy transfer assays to detect protein–protein interactions. Arabidopsis is well-suited for microscopy and its small size facilitates live cell imaging, enabling observation of protein–protein interactions in living chloroplasts. The methods described in this chapter can be used to analyse protein–protein interactions of two known proteins and to dissect interacting protein domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez-Juez, E., and Pyke, K. A. (2005) Plastids unleashed: their development and their integration in plant development. Int. J. Dev. Biol. 49, 557–577.

    Article  PubMed  CAS  Google Scholar 

  2. Shoemaker, B. A., and Panchenko, A. R. (2007) Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS Comput. Biol. 3, e42.

    Article  PubMed  Google Scholar 

  3. Shoemaker, B. A., and Panchenko, A. R. (2007) Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput. Biol. 3, e43.

    Article  PubMed  Google Scholar 

  4. Hu, C. D., Chinenov, Y., and Kerppola, T. K. (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798.

    Article  PubMed  CAS  Google Scholar 

  5. Gordon, G. W., Berry, G., Liang, X. H., Levine, B., and Herman, B. (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713.

    Article  PubMed  CAS  Google Scholar 

  6. Lakowicz, J. R. (1999) Principles of Fluorescence Spectroscopy, 2nd edn., Plenum Publishing Corp., New York, USA.

    Book  Google Scholar 

  7. Clegg, R. M. (1996) Fluorescence resonance energy transfer. In, Fluorescence Imaging Spectroscopy and Microscopy, Vol. 137 (Wang, X. F., and Herman, B., eds.) John Wiley and Sons Inc., New York, USA, pp. 179–252.

    Google Scholar 

  8. Förster, T. (1965) Delocalized excitation and excitation transfer. In, Modern Quantum Chemistry, Vol. 3 (Sinanoglu, O., ed.) Academic Press Inc., New York, USA, pp. 93–137.

    Google Scholar 

  9. Kerppola, T. K. (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc. 1, 1278–1286.

    Article  PubMed  Google Scholar 

  10. Maple, J., Aldridge, C., and Moller, S. G. (2005) Plastid division is mediated by combinatorial assembly of plastid division proteins. Plant J. 43, 811–823.

    Article  PubMed  CAS  Google Scholar 

  11. Maple, J., Vojta, L., Soll, J., and Moller, S. G. (2007) ARC3 is a stromal Z-ring accessory protein essential for plastid division. EMBO Rep. 8, 293–299.

    Article  PubMed  CAS  Google Scholar 

  12. Fujiwara, M. T., Nakamura, A., Itoh, R., Shimada, Y., Yoshida, S., and Moller, S. G. (2004) Chloroplast division site placement requires dimerization of the ARC11/AtMinD1 protein in Arabidopsis. J. Cell Sci. 117, 2399–2410.

    Article  PubMed  CAS  Google Scholar 

  13. Fan, J. Y., Cui, Z. Q., Wei, H. P., Zhang, Z. P., Zhou, Y. F., Wang, Y. P., and Zhang, X. E. (2008) Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells. Biochem. Biophys. Res. Commun. 367, 47–53.

    Article  PubMed  CAS  Google Scholar 

  14. Kerppola, T. K. (2006) Visualization of molecular interactions by fluorescence complementation. Nat. Rev. Mol. Cell Biol. 7, 449–456.

    Article  PubMed  CAS  Google Scholar 

  15. Patterson, G. H., Piston, D. W., and Barisas, B. G. (2000) Forster distances between green fluorescent protein pairs. Anal. Biochem. 284, 438–440.

    Article  PubMed  CAS  Google Scholar 

  16. Pollok, B. A., and Heim, R. (1999) Using GFP in FRET-based applications. Trends Cell Biol. 9, 57–60.

    Article  PubMed  CAS  Google Scholar 

  17. Kost, B., Spielhofer, P., and Chua, N. H. (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 16, 393–401.

    Article  PubMed  CAS  Google Scholar 

  18. Yang, Y., Li, R., and Qi, M. (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 22, 543–551.

    Article  PubMed  CAS  Google Scholar 

  19. Xia, Z., and Liu, Y. (2001) Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81, 2395–2402.

    Article  PubMed  CAS  Google Scholar 

  20. An, G., Ebert, P., Mitra, A., Ha, S. B. (1988) Binary vectors. In, Plant Molecular Biology Manual (Gelvin, S. B., Schilperoort, R.A., and Verma, D. P. S., eds.) Kluwer Academic Publishers, Dordrecht, Netherlands, pp. A3/1-A3/19.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Daniela Gargano for constructive comments on this manuscript. This work was supported by Stavanger Health Research and The Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon G. Møller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Maple, J., Møller, S.G. (2011). Studying Interactions Between Chloroplast Proteins in Intact Plant Cells Using Bimolecular Fluorescence Complementation and Förster Resonance Energy Transfer. In: Jarvis, R. (eds) Chloroplast Research in Arabidopsis. Methods in Molecular Biology, vol 775. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-237-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-237-3_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-236-6

  • Online ISBN: 978-1-61779-237-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics