Skip to main content

The Workflow for Quantitative Proteome Analysis of Chloroplast Development and Differentiation, Chloroplast Mutants, and Protein Interactions by Spectral Counting

  • Protocol
  • First Online:
Chloroplast Research in Arabidopsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 775))

Abstract

This chapter outlines a quantitative proteomics workflow using a label-free spectral counting technique. The workflow has been tested on different aspects of chloroplast biology in maize and Arabidopsis, including chloroplast mutant analysis, cell-type specific chloroplast differentiation, and the proplastid-to-­chloroplast transition. The workflow involves one-dimensional SDS-PAGE of the proteomes of leaves or chloroplast subfractions, tryptic digestions, online LC-MS/MS using a mass spectrometer with high mass accuracy and duty cycle, followed by semiautomatic data processing. The bioinformatics analysis can effectively select best gene models and deals with quantification of closely related proteins; the workflow avoids overidentification of proteins and results in more accurate protein quantification. The final output includes pairwise comparative quantitative analysis, as well as hierarchical clustering for discovery of temporal and spatial patterns of protein accumulation. A brief discussion about potential pitfalls, as well as the advantages and disadvantages of spectral counting, is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., and Kuster, B. (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031.

    Article  PubMed  CAS  Google Scholar 

  2. Mann, M., and Kelleher, N. L. (2008) Precision proteomics: the case for high resolution and high mass accuracy (Special Feature). Proc. Natl. Acad. Sci. USA 105, 18132–18138.

    Article  PubMed  CAS  Google Scholar 

  3. Domon, B., and Aebersold, R. (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat. Biotechnol. 28, 710–721.

    Article  PubMed  CAS  Google Scholar 

  4. Hu, Q., Noll, R. J., Li, H., Makarov, A., Hardman, M., and Cooks, G. R. (2005) The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40, 430–443.

    Article  PubMed  CAS  Google Scholar 

  5. Makarov, A., Denisov, E., Lange, O., and Horning, S. (2006) Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J. Am. Soc. Mass. Spectrom. 17, 977–982.

    Article  PubMed  CAS  Google Scholar 

  6. Liu, H., Sadygov, R. G., and Yates, J. R., 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193–4201.

    Article  PubMed  CAS  Google Scholar 

  7. Zybailov, B., Coleman, M. K., Florens, L., and Washburn, M. P. (2005) Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal. Chem. 77, 6218–6224.

    Article  PubMed  CAS  Google Scholar 

  8. Old, W. M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K. G., Mendoza, A., Sevinsky, J. R., Resing, K. A., and Ahn, N. G. (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 4, 1487–1502.

    Article  PubMed  CAS  Google Scholar 

  9. Lu, P., Vogel, C., Wang, R., Yao, X., and Marcotte, E. M. (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25, 117–124.

    Article  PubMed  CAS  Google Scholar 

  10. Zybailov, B., Rutschow, H., Friso, G., Rudella, A., Emanuelsson, O., Sun, Q., and van Wijk, K. J. (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3, e1994.

    Article  PubMed  Google Scholar 

  11. Sandhu, C., Hewel, J. A., Badis, G., Talukder, S., Liu, J., Hughes, T. R., and Emili, A. (2008) Evaluation of data-dependent versus targeted shotgun proteomic approaches for monitoring transcription factor expression in breast cancer. J. Proteome Res. 7, 1529–1541.

    Article  PubMed  CAS  Google Scholar 

  12. Scigelova, M. and Makarov, A. (2006) Orbitrap mass analyzer - overview and applications in proteomics. Proteomics 6 (Suppl. 2), 16–21.

    Article  PubMed  Google Scholar 

  13. Olsen, J. V., Schwartz, J. C., Griep-Raming, J., Nielsen, M. L., Damoc, E., Denisov, E., Lange, O., Remes, P., Taylor, D., Splendore, M., Wouters, E. R., Senko, M., Makarov, A., Mann, M., and Horning, S. (2009) A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol. Cell. Proteomics 8, 2759–2769.

    Article  PubMed  CAS  Google Scholar 

  14. Syka, J. E., Marto, J. A., Bai, D. L., Horning, S., Senko, M. W., Schwartz, J. C., Ueberheide, B., Garcia, B., Busby, S., Muratore, T., Shabanowitz, J., and Hunt, D. F. (2004) Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J. Proteome Res. 3, 621–626.

    Article  PubMed  CAS  Google Scholar 

  15. Kim, J., Rudella, A., Ramirez Rodriguez, V., Zybailov, B., Olinares, P. D., and van Wijk, K. J. (2009) Subunits of the plastid ClpPR protease complex have differential contributions to embryogenesis, plastid biogenesis, and plant development in Arabidopsis. Plant Cell. 21, 1669–1692.

    Article  PubMed  CAS  Google Scholar 

  16. Zybailov, B., Friso, G., Kim, J., Rudella, A., Rodriguez, V. R., Asakura, Y., Sun, Q., and van Wijk, K. J. (2009) Large scale comparative proteomics of a chloroplast Clp protease mutant reveals folding stress, altered protein homeostasis, and feedback regulation of metabolism. Mol. Cell. Proteomics 8, 1789–1810.

    Article  PubMed  CAS  Google Scholar 

  17. Majeran, W., Zybailov, B., Ytterberg, A. J., Dunsmore, J., Sun, Q., and van Wijk, K. J. (2008) Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol. Cell. Proteomics 7, 1609–1638.

    Article  PubMed  CAS  Google Scholar 

  18. Majeran, W., Cai, Y., Sun, Q., and van Wijk, K. J. (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17, 3111–3140.

    Article  PubMed  CAS  Google Scholar 

  19. Friso, G., Majeran, W., Huang, M., Sun, Q., and van Wijk, K. J. (2010) Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol. 152, 1219–1250.

    Article  PubMed  CAS  Google Scholar 

  20. Majeran, M., Friso, G., Ponnala, L., Connolly, B., Huang, M., Reidel, E., Zhang, C., Asakura, Y., Bhuiyan, N. H., Sun, Q., Turgeon, R., and van Wijk, K. J. (2010) Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics. Plant Cell, in press.

    Google Scholar 

  21. Olinares, P. D., Ponnola, L., and van Wijk, K. J. (2010) Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry and hierarchical clustering. Mol. Cell. Proteomics 9, 1594–1615.

    Article  PubMed  CAS  Google Scholar 

  22. Yu, F., Fu, A., Aluru, M., Park, S., Xu, Y., Liu, H., Liu, X., Foudree, A., Nambogga, M., and Rodermel, S. (2007) Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ. 30, 350–365.

    Article  PubMed  CAS  Google Scholar 

  23. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  24. Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R., and Roepstorff, P. (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 34, 105–116.

    Article  PubMed  CAS  Google Scholar 

  25. Zybailov, B., Sun, Q., and van Wijk, K. J. (2009) Workflow for large scale detection and validation of peptide modifications by RPLC-LTQ-Orbitrap: application to the Arabidopsis thaliana leaf proteome and an online modified peptide library. Anal. Chem. 81, 8015–8024.

    Article  PubMed  CAS  Google Scholar 

  26. Enright, A. J., Van Dongen, S., and Ouzounis, C. A. (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584.

    Article  PubMed  CAS  Google Scholar 

  27. Sokal, R. R., and Rohlf, F. J. (1995) Analysis of frequencies (chapter 17). In, Biometry: The Principles and Practice of Statistics in Biological Research, 3rd edn. W.H. Freeman and Co., New York, USA, pp. 685–793.

    Google Scholar 

  28. Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300.

    Google Scholar 

  29. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaas J. van Wijk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Friso, G., Olinares, P.D.B., van Wijk, K.J. (2011). The Workflow for Quantitative Proteome Analysis of Chloroplast Development and Differentiation, Chloroplast Mutants, and Protein Interactions by Spectral Counting. In: Jarvis, R. (eds) Chloroplast Research in Arabidopsis. Methods in Molecular Biology, vol 775. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-237-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-237-3_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-236-6

  • Online ISBN: 978-1-61779-237-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics