Skip to main content

MADS and More: Transcription Factors That Shape the Plant

  • Protocol
  • First Online:
Plant Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 754))

Abstract

All major processes of life depend on differential gene expression, which is largely controlled by the activity of transcription factors (TFs). In plants many TFs are encoded by members of multigene families that expanded much more dramatically during land plant evolution than during the evolution of animals and fungi. Here we review typical features such as domain structure, DNA binding, and protein interactions of TFs from some families that have contributed to the development and evolution of plant-specific structures in especially important ways. Our survey includes the MADS-domain protein family involved in specifying meristem and organ identity; YABBY proteins controlling lamina outgrowth; TCP proteins controlling floral zygomorphy and apical dominance; and finally homeodomain proteins involved in stem-cell maintenance and many other processes. Common themes as well as interesting differences between these “molecular architects of plant body plans” will become apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riechmann, J. L. (2006) Transcription factors of Arabidopsis and rice: a genomic perspective. In: Grasser, K. D. (ed) Regulation of transcription in plants. Blackwell, Oxford. Annu. Plant Rev. 29, 28–53.

    Google Scholar 

  2. Shiu, S.-H., Shih, M.-C., and Li, W.-H. (2005) Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol. 139, 18–26.

    Article  PubMed  CAS  Google Scholar 

  3. Gramzow, L. and Theißen, G. (2010) A hitchhiker’s guide to the MADS world of plants. Genome Biol. 11, 214.

    Article  PubMed  Google Scholar 

  4. Theißen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J. T., Münster, T., Winter, K. U., and Saedler, H. (2000) A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115–149.

    Article  PubMed  Google Scholar 

  5. Dietz, K.-J., Vogel, M. O., and Viehhauser, A. (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma. 245, 3–14.

    Google Scholar 

  6. Pires, N. and Dolan, L. (2010) Origin and diversification of basic-helix-loop-helix proteins in plants. Mol. Biol. Evol. 27, 862–874.

    Article  PubMed  CAS  Google Scholar 

  7. Rushton, P. J., Somsich, I. E., Ringler, P., and Shen, Q. J. (2010) WRKY transcription factors. Trends Plant Sci. 15, 247–258.

    Article  PubMed  CAS  Google Scholar 

  8. Pérez-Rodriguez, P., Riano-Pachón, D. M., Guedes Correa, L. G., Rensing, S. A., Kersten, B., and Mueller-Roeber, B. (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res. 38, D822–D827.

    Article  PubMed  Google Scholar 

  9. Richard, S., Lang, D., Reski, R., Frank, W., and Rensing, S. A. (2007) PlanTAPDB, a phylogeny-based resource of plant transcription-associated proteins. Plant Physiol. 143, 1452–1466.

    Article  Google Scholar 

  10. Gramzow, L., Ritz, M. S., and Theissen, G. (2010) On the origin of MADS-domain transcription factors. Trends Genet. 26, 149–153.

    Article  PubMed  CAS  Google Scholar 

  11. Parenicova, L., de Folter, S., Kieffer, M., Horner, D. S., Favalli, C., Busscher, J., et al. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15, 1538–1551.

    Article  PubMed  CAS  Google Scholar 

  12. Bemer, M., Gordon, J., Weterings, K., and Angenent, G. C. (2010) Divergence of recently duplicated M gamma-type MADS-box genes in Petunia. Mol. Biol. Evol. 27, 481–495.

    Article  PubMed  CAS  Google Scholar 

  13. Becker, A. and Theißen, G. (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29, 464–489.

    Article  PubMed  CAS  Google Scholar 

  14. Kaufmann, K., Melzer, R., and Theißen, G. (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347, 183–198.

    Article  PubMed  CAS  Google Scholar 

  15. Causier, B., Schwarz-Sommer, Z., and Davies, B. (2010) Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 21, 73–79.

    Article  PubMed  CAS  Google Scholar 

  16. Krizek, B. A. and Fletcher, J. C. (2005) Molecular mechanisms of flower development: an armchair guide. Nat. Rev. Genet. 6, 688–698.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, C., Thong, Z. H., and Yu, H. (2009) Coming into bloom: the specification of floral meristems. Development 136, 3379–3391.

    Article  PubMed  CAS  Google Scholar 

  18. Castillejo, C., Romera-Branchat, M., and Pelaz, S. (2005) A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant J. 43, 586–596.

    Article  PubMed  CAS  Google Scholar 

  19. Gregis, V., Sessa, A., Dorca-Fornell, C., and Kater, M. M. (2009) The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J. 60, 626–637.

    Article  PubMed  CAS  Google Scholar 

  20. Liu, C., Xi, W. Y., Shen, L. S., Tan, C. P., and Yu, H. (2009) Regulation of floral patterning by flowering time genes. Dev. Cell 16, 711–722.

    Article  PubMed  CAS  Google Scholar 

  21. de Folter, S. and Angenent, G. C. (2006) Trans meets cis in MADS science. Trends Plant Sci. 11, 224–231.

    Article  PubMed  Google Scholar 

  22. Theißen, G. (2001) Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85.

    Article  PubMed  Google Scholar 

  23. Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525–529.

    Article  PubMed  CAS  Google Scholar 

  24. Theißen, G. and Melzer, R. (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann. Bot. 100, 603–619.

    Article  PubMed  Google Scholar 

  25. Liu, Z. C. and Mara, C. (2010) Regulatory mechanisms for floral homeotic gene expression. Semin. Cell Dev. Biol. 21, 80–86.

    Article  PubMed  Google Scholar 

  26. Sablowski, R. (2010) Genes and functions controlled by floral organ identity genes. Semin. Cell Dev. Biol. 21, 94–99.

    Article  PubMed  CAS  Google Scholar 

  27. Floyd, S. K. and Bowman, J. L. (2007) The ancestral developmental tool kit of land plants. Int. J. Plant Sci. 168, 1–35.

    Article  CAS  Google Scholar 

  28. Bowman, J. L. (2000) The YABBY gene family and abaxial cell fate. Curr. Opin. Plant Biol. 3, 17–22.

    Article  PubMed  CAS  Google Scholar 

  29. Kanaya, E., Nakajima, N., and Okada, K. (2002) Non-sequence-specific DNA binding by the FILAMENTOUS FLOWER protein from Arabidopsis thaliana is reduced by EDTA. J. Biol. Chem. 277, 11957–11964.

    Article  PubMed  CAS  Google Scholar 

  30. Dai, M. Q., Zhao, Y., Ma, Q. F., Hu, Y., Hedden, P. F., Zhang, Q., et al. (2007) The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol. 144, 121–133.

    Article  PubMed  CAS  Google Scholar 

  31. Sieber, P., Petrascheck, M., Barberis, A., and Schneitz, K. (2004) Organ polarity in Arabidopsis. NOZZLE physically interacts with members of the YABBY family. Plant Physiol. 135, 2172–2185.

    Article  PubMed  CAS  Google Scholar 

  32. Stahle, M. I., Kuehlich, J., Staron, L., von Arnim, A. G., and Golz, J. F. (2009) YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis. Plant Cell 21, 3105–3118.

    Article  PubMed  CAS  Google Scholar 

  33. Husbands, A. Y., Chitwood, D. H., Plavskin, Y., and Timmermans, M. C. P. (2009) Signals and prepatterns: new insights into organ polarity in plants. Genes Dev. 23, 1986–1997.

    Article  PubMed  CAS  Google Scholar 

  34. Toriba, T., Harada, K., Takamura, A., Nakamura, H., Ichikawa, H., Suzaki, T., et al. (2007) Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol. Genet. Genomics 277, 457–468.

    Article  PubMed  CAS  Google Scholar 

  35. Kidner, C. A. and Timmermans, M. C. P. (2007) Mixing and matching pathways in leaf polarity. Curr. Opin. Plant Biol. 10, 13–20.

    Article  PubMed  Google Scholar 

  36. Martin-Trillo, M. and Cubas, P. (2009) TCP genes: a family snapshot ten years later. Trends Plant Sci. 15, 31–39.

    Article  PubMed  Google Scholar 

  37. Preston, J. C. and Hileman, L. C. (2009) Developmental genetics of floral symmetry evolution. Trends Plant Sci. 14, 147–154.

    Article  PubMed  CAS  Google Scholar 

  38. Hileman, L. C. and Cubas, P. (2009) An expanded evolutionary role for flower symmetry genes. J. Biol. 8, 90.

    Article  PubMed  Google Scholar 

  39. Ariel, F. D., Manavella, P. A., Dezar, C. A., and Chan, R. L. (2007) The true story of the HD-Zip family. Trends Plant Sci. 12, 419–426.

    Article  PubMed  CAS  Google Scholar 

  40. Mukherjee, K., Brocchieri, L., and Burglin, T. R. (2009) A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol. Biol. Evol. 26, 2775–2794.

    Article  PubMed  CAS  Google Scholar 

  41. Smith, Z. R. and Long, J. A. (2010) Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors. Nature 464, 423–426.

    Article  PubMed  CAS  Google Scholar 

  42. van der Graaff, E., Laux, T., and Rensing, S. A. (2009) The WUS homeobox-containing (WOX) protein family. Genome Biol. 10, 248.

    Article  PubMed  Google Scholar 

  43. Nardmann, J., Reisewitz, P., and Werr, W. (2009) Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Mol. Biol. Evol. 26, 1745–1755.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Theißen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Melzer, R., Theißen, G. (2011). MADS and More: Transcription Factors That Shape the Plant. In: Yuan, L., Perry, S. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 754. Humana Press. https://doi.org/10.1007/978-1-61779-154-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-154-3_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-153-6

  • Online ISBN: 978-1-61779-154-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics