Skip to main content

Design and Synthesis of Novel Functional Lipid-Based Bioconjugates for Drug Delivery and Other Applications

  • Protocol
  • First Online:
Bioconjugation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 751))

Abstract

The modification of biologicals such as proteins/peptides, small molecules, and other polymers with lipids provides an efficient method for mediating their insertion into liposomes and lipid-core micellar nanocarriers. In this chapter, we describe several representative protocols developed in our laboratory for the bioconjugation of liposomes and lipid-core micelles for drug/gene delivery and diagnostic imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lasic, D. D. (1993) Liposomes: From Physics to Applications, Elsevier, Amsterdam.

    Google Scholar 

  2. Torchilin, V. P. (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4, 145–160.

    Article  PubMed  CAS  Google Scholar 

  3. Lasic, D. D., and Martin, F. J. (1995) Stealth Liposomes, CRC Press, Boca Raton.

    Google Scholar 

  4. Lukyanov, A. N., and Torchilin, V. P. (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56, 1273–1289.

    Article  PubMed  CAS  Google Scholar 

  5. Gao, Z., Lukyanov, A. N., Chakilam, A. R., and Torchilin, V. P. (2003) PEG-PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J Drug Target 11, 87–92.

    Article  PubMed  CAS  Google Scholar 

  6. Mu, L., Elbayoumi, T. A., and Torchilin, V. P. (2005) Mixed micelles made of poly(ethylene glycol)-phosphatidylethanolamine conjugate and d-alpha-tocopheryl polyethylene glycol 1000 succinate as pharmaceutical nanocarriers for camptothecin. Int J Pharm 306, 142–149.

    Article  PubMed  CAS  Google Scholar 

  7. Roby, A., Erdogan, S., and Torchilin, V. P. (2006) Solubilization of poorly soluble PDT agent, meso-tetraphenylporphin, in plain or immunotargeted PEG-PE micelles results in dramatically improved cancer cell killing in vitro. Eur J Pharm Biopharm 62, 235–240.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, J., Mongayt, D. A., Lukyanov, A. N., Levchenko, T. S., and Torchilin, V. P. (2004) Preparation and in vitro synergistic anticancer effect of vitamin K3 and 1,8-diazabicyclo[5,4,0]undec-7-ene in poly(ethylene glycol)-diacyllipid micelles. Int J Pharm 272, 129–135.

    Article  PubMed  CAS  Google Scholar 

  9. Lukyanov, A. N., Hartner, W. C., and Torchilin, V. P. (2004) Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release 94, 187–193.

    Article  PubMed  CAS  Google Scholar 

  10. Torchilin, V. P. (2005) Lipid-core micelles for targeted drug delivery. Curr Drug Deliv 2, 319–327.

    Article  PubMed  CAS  Google Scholar 

  11. Kirpotin, D., Park, J. W., Hong, K., Zalipsky, S., Li, W. L., Carter, P., Benz, C. C., and Papahadjopoulos, D. (1997) Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36, 66–75.

    Article  PubMed  CAS  Google Scholar 

  12. Allen, T. M., Brandeis, E., Hansen, C. B., Kao, G. Y., and Zalipsky, S. (1995) A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochim Biophys Acta 1237, 99–108.

    Article  PubMed  Google Scholar 

  13. Wong, J. Y., Kuhl, T. L., Israelachvili, J. N., Mullah, N., and Zalipsky, S. (1997) Direct measurement of a tethered ligand-receptor interaction potential. Science 275, 820–822.

    Article  PubMed  CAS  Google Scholar 

  14. Gabizon, A., Horowitz, A. T., Goren, D., Tzemach, D., Mandelbaum-Shavit, F., Qazen, M. M., and Zalipsky, S. (1999) Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem 10, 289–298.

    Article  PubMed  CAS  Google Scholar 

  15. Maruyama, K., Takizawa, T., Yuda, T., Kennel, S. J., Huang, L., and Iwatsuru, M. (1995) Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies. Biochim Biophys Acta 1234, 74–80.

    Article  PubMed  Google Scholar 

  16. Blume, G., Cevc, G., Crommelin, M. D., Bakker-Woudenberg, I. A., Kluft, C., and Storm, G. (1993) Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta 1149, 180–184.

    Article  PubMed  CAS  Google Scholar 

  17. Hansen, C. B., Kao, G. Y., Moase, E. H., Zalipsky, S., and Allen, T. M. (1995) Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim Biophys Acta 1239, 133–144.

    Article  PubMed  Google Scholar 

  18. Harding, J. A., Engbers, C. M., Newman, M. S., Goldstein, N. I., and Zalipsky, S. (1997) Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim Biophys Acta 1327, 181–192.

    Article  PubMed  CAS  Google Scholar 

  19. Zalipsky, S., Mullah, N., Harding, J. A., Gittelman, J., Guo, L., and DeFrees, S. A. (1997) Poly(ethylene glycol)-grafted liposomes with oligopeptide or oligosaccharide ligands appended to the termini of the polymer chains. Bioconjug Chem 8, 111–118.

    Article  PubMed  CAS  Google Scholar 

  20. Shahinian, S., and Silvius, J. R. (1995) A novel strategy affords high-yield coupling of antibody Fab′ fragments to liposomes. Biochim Biophys Acta 1239, 157–167.

    Article  PubMed  Google Scholar 

  21. Park, K., Lee, M. Y., Kim, K. S., and Hahn, S. K. Target specific tumor treatment by VEGF siRNA complexed with reducible polyethyleneimine-hyaluronic acid conjugate. Biomaterials 31, 5258–5265.

    Google Scholar 

  22. Cheng, W. W., and Allen, T. M. (2008) Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab′ fragments and single chain Fv. J Control Release 126, 50–58.

    Article  PubMed  CAS  Google Scholar 

  23. Mamot, C., Drummond, D. C., Greiser, U., Hong, K., Kirpotin, D. B., Marks, J. D., and Park, J. W. (2003) Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res 63, 3154–3161.

    PubMed  CAS  Google Scholar 

  24. Torchilin, V. P., Levchenko, T. S., Lukyanov, A. N., Khaw, B. A., Klibanov, A. L., Rammohan, R., Samokhin, G. P., and Whiteman, K. R. (2001) p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta 1511, 397–411.

    Article  PubMed  CAS  Google Scholar 

  25. Torchilin, V. P., Rammohan, R., Weissig, V., and Levchenko, T. S. (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A 98, 8786–8791.

    Article  PubMed  CAS  Google Scholar 

  26. Lukyanov, A. N., Elbayoumi, T. A., Chakilam, A. R., and Torchilin, V. P. (2004) Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100, 135–144.

    Article  PubMed  CAS  Google Scholar 

  27. Sawant, R. M., Cohen, M. B., Torchilin, V. P., and Rokhlin, O. W. (2008) Prostate cancer-specific monoclonal antibody 5D4 significantly enhances the cytotoxicity of doxorubicin-loaded liposomes against target cells in vitro. J Drug Target 16, 601–604.

    Article  PubMed  CAS  Google Scholar 

  28. Sofou, S., and Sgouros, G. (2008) Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv 5, 189–204.

    Article  PubMed  CAS  Google Scholar 

  29. Torchilin, V. (2008) Antibody-modified liposomes for cancer chemotherapy. Expert Opin Drug Deliv 5, 1003–1025.

    Article  PubMed  CAS  Google Scholar 

  30. Sapra, P., Tyagi, P., and Allen, T. M. (2005) Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv 2, 369–381.

    Article  PubMed  CAS  Google Scholar 

  31. Zalipsky, S. (1993) Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes. Bioconjug Chem 4, 296–299.

    Article  PubMed  CAS  Google Scholar 

  32. Torchilin, V. P., Weissig, V., Martin, F. J., and Heath, T. D. (2003) Surface modifications of liposomes, in Liposomes: A practical approach (Torchilin, V. P., and Weissig, V., Eds.) pp 193–299, Oxford University Press, Oxford, New York.

    Google Scholar 

  33. Ishida, T., Iden, D. L., and Allen, T. M. (1999) A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett 460, 129–133.

    Article  PubMed  CAS  Google Scholar 

  34. Torchilin, V. P., Lukyanov, A. N., Gao, Z., and Papahadjopoulos-Sternberg, B. (2003) Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A 100, 6039–6044.

    Article  PubMed  CAS  Google Scholar 

  35. Hilgenbrink, A. R., and Low, P. S. (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94, 2135–2146.

    Article  PubMed  CAS  Google Scholar 

  36. Pan, X., and Lee, R. J. (2007) Construction of anti-EGFR immunoliposomes via folate-folate binding protein affinity. Int J Pharm 336, 276–283.

    Article  PubMed  CAS  Google Scholar 

  37. Wu, J., Liu, Q., and Lee, R. J. (2006) A folate receptor-targeted liposomal formulation for paclitaxel. Int J Pharm 316, 148–153.

    Article  PubMed  CAS  Google Scholar 

  38. Salmaso, S., Pappalardo, J. S., Sawant, R. R., Musacchio, T., Rockwell, K., Caliceti, P., and Torchilin, V. P. (2009) Targeting glioma cells in vitro with ascorbate-conjugated pharmaceutical nanocarriers. Bioconjug Chem 20, 2348–2355.

    Article  PubMed  CAS  Google Scholar 

  39. Kichler, A. (2004) Gene transfer with modified polyethylenimines. J Gene Med 6 Suppl 1, S3–10.

    Article  PubMed  CAS  Google Scholar 

  40. Boussif, O., Lezoualc’h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J. P. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92, 7297–7301.

    Article  PubMed  CAS  Google Scholar 

  41. Akinc, A., Thomas, M., Klibanov, A. M., and Langer, R. (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7, 657–663.

    Article  PubMed  CAS  Google Scholar 

  42. Kircheis, R., Wightman, L., and Wagner, E. (2001) Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev 53, 341–358.

    Article  PubMed  CAS  Google Scholar 

  43. Brunner, S., Furtbauer, E., Sauer, T., Kursa, M., and Wagner, E. (2002) Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol Ther 5, 80–86.

    Article  PubMed  CAS  Google Scholar 

  44. Merdan, T., Kopecek, J., and Kissel, T. (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54, 715–758.

    Article  PubMed  CAS  Google Scholar 

  45. Neu, M., Fischer, D., and Kissel, T. (2005) Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 7, 992–1009.

    Article  PubMed  CAS  Google Scholar 

  46. Oupicky, D., Ogris, M., and Seymour, L. W. (2002) Development of long-circulating polyelectrolyte complexes for systemic delivery of genes. J Drug Target 10, 93–98.

    Article  PubMed  CAS  Google Scholar 

  47. Yamazaki, Y., Nango, M., Matsuura, M., Hasegawa, Y., Hasegawa, M., and Oku, N. (2000) Polycation liposomes, a novel nonviral gene transfer system, constructed from cetylated polyethylenimine. Gene Ther 7, 1148–1155.

    Article  PubMed  CAS  Google Scholar 

  48. Wang, D. A., Narang, A. S., Kotb, M., Gaber, A. O., Miller, D. D., Kim, S. W., and Mahato, R. I. (2002) Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules 3, 1197–1207.

    Article  PubMed  CAS  Google Scholar 

  49. Lee, M., Rentz, J., Bikram, M., Han, S., Bull, D. A., and Kim, S. W. (2003) Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther 10, 1535–1542.

    Article  PubMed  CAS  Google Scholar 

  50. Janat-Amsbury, M. M., Yockman, J. W., Lee, M., Kern, S., Furgeson, D. Y., Bikram, M., and Kim, S. W. (2005) Local, non-viral IL-12 gene therapy using a water soluble lipopolymer as carrier system combined with systemic paclitaxel for cancer treatment. J Control Release 101, 273–285.

    Article  PubMed  CAS  Google Scholar 

  51. Lee, M., Rentz, J., Han, S. O., Bull, D. A., and Kim, S. W. (2003) Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium. Gene Ther 10, 585–593.

    Article  PubMed  CAS  Google Scholar 

  52. Heyes, J., Palmer, L., Chan, K., Giesbrecht, C., Jeffs, L., and MacLachlan, I. (2007) Lipid encapsulation enables the effective systemic delivery of polyplex plasmid DNA. Mol Ther 15, 713–720.

    PubMed  CAS  Google Scholar 

  53. Ko, Y. T., Kale, A., Hartner, W. C., Papahadjopoulos-Sternberg, B., and Torchilin, V. P. (2009) Self-assembling micelle-like nanoparticles based on phospholipid-polyethyleneimine conjugates for systemic gene delivery. J Control Release 133, 132–138.

    Article  PubMed  CAS  Google Scholar 

  54. Unger, E., Shen, D. K., Wu, G. L., and Fritz, T. (1991) Liposomes as MR contrast agents: pros and cons. Magn Reson Med 22, 304–308; discussion 313.

    Google Scholar 

  55. Barsky, D., Putz, B., Schulten, K., and Magin, R. L. (1992) Theory of paramagnetic contrast agents in liposome systems. Magn Reson Med 24, 1–13.

    Article  PubMed  CAS  Google Scholar 

  56. Unger, E., Tilcock, C., Ahkong, Q. F., and Fritz, T. (1990) Paramagnetic liposomes as magnetic resonance contrast agents. Invest Radiol 25 Suppl 1, S65–66.

    PubMed  CAS  Google Scholar 

  57. Gries, H. (2002) Extracellular MRI contrast agents based on gadolinium., in Topics in current chemistry, contrast agent. (Krause, W., Ed.) pp 3-29, Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  58. Strijkers, G. J., Mulder, W. J., van Heeswijk, R. B., Frederik, P. M., Bomans, P., Magusin, P. C., and Nicolay, K. (2005) Relaxivity of liposomal paramagnetic MRI contrast agents. Magma 18, 186–192.

    Article  PubMed  CAS  Google Scholar 

  59. Kabalka, G., Buonocore, E., Hubner, K., Moss, T., Norley, N., and Huang, L. (1987) Gadolinium-labeled liposomes: targeted MR contrast agents for the liver and spleen. Radiology 163, 255–258.

    PubMed  CAS  Google Scholar 

  60. Kabalka, G. W., Davis, M. A., Moss, T. H., Buonocore, E., Hubner, K., Holmberg, E., Maruyama, K., and Huang, L. (1991) Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn Reson Med 19, 406–415.

    Article  PubMed  CAS  Google Scholar 

  61. Trubetskoy, V. S., Cannillo, J. A., Milshtein, A., Wolf, G. L., and Torchilin, V. P. (1995) Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties. Magn Reson Imaging 13, 31–37.

    Article  PubMed  CAS  Google Scholar 

  62. McDannold, N., Fossheim, S. L., Rasmussen, H., Martin, H., Vykhodtseva, N., and Hynynen, K. (2004) Heat-activated liposomal MR contrast agent: initial in vivo results in rabbit liver and kidney. Radiology 230, 743–752.

    Article  PubMed  Google Scholar 

  63. Lokling, K. E., Fossheim, S. L., Skurtveit, R., Bjornerud, A., and Klaveness, J. (2001) pH-sensitive paramagnetic liposomes as MRI contrast agents: in vitro feasibility studies. Magn Reson Imaging 19, 731–738.

    Article  PubMed  CAS  Google Scholar 

  64. Trubetskoy, V. S., and Torchilin, V. P. (1994) New approaches in the chemical design of Gd-containing liposomes for use in magnetic resonance imaging of lymph nodes. J Liposome Res 4, 961–980.

    Article  CAS  Google Scholar 

  65. Torchilin, V. P. (2000) Polymeric contrast agents for medical imaging. Curr Pharm Biotechnol 1, 183–215.

    Article  PubMed  CAS  Google Scholar 

  66. Weissig, V. V., Babich, J., and Torchilin, V. V. (2000) Long-circulating gadolinium-loaded liposomes: potential use for magnetic resonance imaging of the blood pool. Colloids Surf B Biointerfaces 18, 293–299.

    Article  PubMed  CAS  Google Scholar 

  67. Sims, G. E., and Snape, T. J. (1980) A method for the estimation of polyethylene glycol in plasma protein fractions. Anal Biochem 107, 60–63.

    Article  PubMed  CAS  Google Scholar 

  68. Karlsen, A., Blomhoff, R., and Gundersen, T. E. (2005) High-throughput analysis of vitamin C in human plasma with the use of HPLC with monolithic column and UV-detection. J Chromatogr B Analyt Technol Biomed Life Sci 824, 132–138.

    Article  PubMed  CAS  Google Scholar 

  69. Snyder, S. L., and Sobocinski, P. Z. (1975) An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem 64, 284–288.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sawant, R.R., Torchilin, V.P. (2011). Design and Synthesis of Novel Functional Lipid-Based Bioconjugates for Drug Delivery and Other Applications. In: Mark, S. (eds) Bioconjugation Protocols. Methods in Molecular Biology, vol 751. Humana Press. https://doi.org/10.1007/978-1-61779-151-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-151-2_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-150-5

  • Online ISBN: 978-1-61779-151-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics