Skip to main content

A Protocol on the Use of Titanium Dioxide Chromatography for Phosphoproteomics

  • Protocol
  • First Online:
Gel-Free Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 753))

Abstract

Over the past decade phosphoproteomics has become an emerging discipline within proteomics research, focusing on detection of the reversible modification of proteins by phosphorylation of serine, threonine, and tyrosine residues. For successful analysis, phosphopeptide enrichment is often a prerequisite due to their low stoichiometry, heterogeneity, and low abundance. The enrichment of phosphopeptides is often performed manually, which is inherently labor intensive and a major hindrance in large-scale analyses. Automation of the enrichment method would vastly improve reproducibility and thereby facilitate “high-throughput” phosphoproteomics research. Here, we describe the setup of a simple, robust, and automated online TiO2-based nanoscale chromatographic approach to selectively enrich and separate phosphorylated peptides from proteolytic digests of moderate and high complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mukherji M (2005) Phosphoproteomics in analyzing signaling pathways. Expert Review of Proteomics. 2, 117–128.

    Article  PubMed  CAS  Google Scholar 

  2. Rogers LD, Foster LJ (2009) Phosphoproteomics–finally fulfilling the promise? Molecular Biosystems. 5, 1122–1129.

    Article  PubMed  CAS  Google Scholar 

  3. Gafken PR (2009) An overview of the qualitative analysis of phosphoproteins by mass spectrometry. Methods in Molecular Biology. 527, 159–172.

    Article  PubMed  CAS  Google Scholar 

  4. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics. 9, 1451–1468.

    Article  PubMed  CAS  Google Scholar 

  5. Reinders J, Sickmann A (2005) State-of-the-art in phosphoproteomics. Proteomics. 5, 4052–4061.

    Article  PubMed  CAS  Google Scholar 

  6. Lemeer S, Pinkse MW, Mohammed S, et al. (2008) Online automated in vivo zebrafish phosphoproteomics: from large-scale analysis down to a single embryo. Journal of Proteome Research. 7, 1555–1564.

    Article  PubMed  CAS  Google Scholar 

  7. Mohammed S, Kraiczek K, Pinkse MW, Lemeer S, Benschop JJ, Heck AJ (2008) Chip-based enrichment and nanoLC-MS/MS analysis of phosphopeptides from whole lysates. Journal of Proteome Research. 7, 1565–1571.

    Article  PubMed  CAS  Google Scholar 

  8. Pinkse MW, Mohammed S, Gouw JW, van Breukelen B, Vos HR, Heck AJ. (2008) Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. Journal of Proteome Research. 7, 687–697.

    Article  PubMed  CAS  Google Scholar 

  9. Van Hoof D, Munoz J, Braam SR, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell. 5, 214–226.

    Article  PubMed  Google Scholar 

  10. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Analytical Chemistry. 75, 663–670.

    Article  PubMed  CAS  Google Scholar 

  11. Schlosser A, Vanselow JT, Kramer A. (2005) Mapping of phosphorylation sites by a multi-protease approach with specific phosphopeptide enrichment and NanoLC-MS/MS analysis. Analytical Chemistry. 77, 5243–5250.

    Article  PubMed  CAS  Google Scholar 

  12. Meiring HD, van der Heeft E, ten Hove GJ, de Jong APJM (2002) Nanoscale LC-MS(n); technical design and applications to peptide and protein analysis. Journal of Separation Science. 25, 557–568.

    Article  CAS  Google Scholar 

  13. Beausoleil SA, Jedrychowski M, Schwartz D, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proceedings of the National Academy of Sciences of the United States of America. 101, 12130–12135.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge GL Sciences Inc., Tokyo, for the TiO2 Titansphere material. This work was supported by the Netherlands Proteomics Centre (http://www.netherlandsproteomicscentre.nl), a program embedded in the Netherlands Genomics Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn W. H. Pinkse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pinkse, M.W.H., Lemeer, S., Heck, A.J.R. (2011). A Protocol on the Use of Titanium Dioxide Chromatography for Phosphoproteomics. In: Gevaert, K., Vandekerckhove, J. (eds) Gel-Free Proteomics. Methods in Molecular Biology, vol 753. Humana Press. https://doi.org/10.1007/978-1-61779-148-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-148-2_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-147-5

  • Online ISBN: 978-1-61779-148-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics