Skip to main content

Measurement of Ion Transport Function in Rectal Biopsies

  • Protocol
  • First Online:
Cystic Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 741))

Abstract

Cystic fibrosis (CF) is caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as an anion channel and is known to interact with a number of other cellular proteins involved in ion transport. To date more than 1,800 mutations are known, most of which result in various degrees of impaired transport function of the gene product. Due to the high inter-individual variability of disease onset and progression, CF still is a diagnostic challenge. Implemented almost 20 years ago, the measurement of electrolyte transport function of rectal biopsies is a useful ex vivo tool to diagnose CF. In this chapter we will review the different approaches to perform ion transport measurements and try to highlight the advantages and limitations of these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reid, E. W. (1889) Report on experiments upon “absorption without osmosis”. Brit. Med. J. 1, 323–326.

    Article  Google Scholar 

  2. Reid, E. W. (1901) Transport of fluid by certain epithelia. J. Physiol. 26(6), 436–444.

    PubMed  CAS  Google Scholar 

  3. Levi, H., and Ussing, H. H. (1949) Resting potential and ion movements in the frog skin. Nature 164, 928.

    Article  PubMed  CAS  Google Scholar 

  4. Koefoed-Johnsen, V., and Ussing, H. H. (1958) The nature of the frog skin potential. Acta Physiol. Scand. 42, 298–308.

    Article  PubMed  CAS  Google Scholar 

  5. Ussing, H. H., and Zerahn, K. (1951) Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23, 110–127.

    Article  PubMed  CAS  Google Scholar 

  6. Kottra, G., Weber, G., and Frömter, E. (1989) A method to quantify and correct for edge leaks in Ussing chambers. Pflügers Archiv. Eur. J. Physiol. 415, 235–240.

    Article  CAS  Google Scholar 

  7. Gitter, A. H., Schulzke, J. D., Sorgenfrei, D., and Fromm, M. (1997) Ussing chamber for high-frequency transmural impedance analysis of epithelial tissues. J. Biochem. Biophys. Methods 35, 81–88.

    Article  PubMed  CAS  Google Scholar 

  8. Singh, A. K., Singh, S., Devor, D. C., Frizzell, R. A., Driessche, W. V., Bridges, R. J. (2002) Transepithelial impedance analysis of chloride secretion, in (William R. S., ed.), Cystic fibrosis methods and protocols, Vol. 70, pp. 129–142. Humana Press Inc., Totowa, NJ, USA.

    Google Scholar 

  9. Kunzelmann, K., and Mall, M. (2002) Electrolyte transport in the mammalian colon: Mechanisms and implications for disease. Physiol. Rev. 82, 245–289.

    PubMed  CAS  Google Scholar 

  10. Gitter, A. H., Bendfeldt, K., Schulzke, J. D., and Fromm, M. (2000) Trans/paracellular, surface/crypt, and epithelial/subepithelial resistances of mammalian colonic epithelia. Pflügers Arch. 439, 477–482.

    Article  PubMed  CAS  Google Scholar 

  11. Debongnie, J. C., and Phillips, S. F. (1978) Capacity of the human colon to absorb fluid. Gastroenterology 74, 698–703.

    PubMed  CAS  Google Scholar 

  12. Canessa, C. M., Schild, L., Buell, G., Thorens, B., Gautschi, I., Horisberger, J. D., et al. (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367, 463–467.

    Article  PubMed  CAS  Google Scholar 

  13. Heitzmann, D., and Warth, R. (2008) Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol. Rev. 88, 1119–1182.

    Article  PubMed  CAS  Google Scholar 

  14. Schroeder, B. C., Waldegger, S., Fehr, S., Bleich, M., Warth, R., Greger, R., et al. (2000) A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403, 196–199.

    Article  PubMed  CAS  Google Scholar 

  15. Joiner, W. J., Basavappa, S., Vidyasagar, S., et al. (2003) Active K+ secretion through multiple KCa-type channels and regulation by IKCa channels in rat proximal colon. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G185–196.

    PubMed  CAS  Google Scholar 

  16. Butterfield, I., Warhurst, G., Jones, M. N., and Sandle, G. I. (1997) Characterization of apical potassium channels induced in rat distal colon during potassium adaptation. J. Physiol. 501, 537–547.

    Article  PubMed  CAS  Google Scholar 

  17. Matos, J. E., Sausbier, M., Beranek, G., Sausbier, U., Ruth, P., and Leipziger, J. (2007) Role of cholinergic-activated KCa1.1 (BK), KCa3.1 (SK4) and KV7.1 (KCNQ1) channels in mouse colonic Cl secretion. Acta Physiol. 189, 251–258.

    Article  CAS  Google Scholar 

  18. Sausbier, M., Matos, J. E., Sausbier, U., Beranek, G., Arntz, C., Neuhuber, W., et al. (2006) Distal colonic K(+) secretion occurs via BK channels. J. Am. Soc. Nephrol. 17, 1275–1282.

    Article  PubMed  CAS  Google Scholar 

  19. Quinton, P., and Bijman, J. (1983) Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N. Engl. J. Med. 308, 1185–1189.

    Article  PubMed  CAS  Google Scholar 

  20. Greger, R. (2000) Role of CFTR in the colon. Annu. Rev. Physiol. 62, 467–491.

    Article  PubMed  CAS  Google Scholar 

  21. Russo, M. A., Hogenauer, C., Coates, S. W., Santa Ana, C. A., Porter, J. L., Rosenblatt, R. L., et al. (2003) Abnormal passive chloride absorption in cystic fibrosis jejunum functionally opposes the classic chloride secretory defect. J. Clin. Invest. 112, 118–125.

    PubMed  CAS  Google Scholar 

  22. Catalán, M., Niemeyer, M. I., Cid, L. P., and Sepúlveda, F. V. (2004) Basolateral ClC-2 chloride channels in surface colon epithelium: Regulation by a direct effect of intracellular chloride. Gastroenterology 126, 1104–1114.

    Article  PubMed  Google Scholar 

  23. Traynor, T. R., and O’Grady, S. M. (1992) Mechanisms of Na and Cl absorption across the distal colon epithelium of the pig. J. Comp. Physiol. B 162, 47–53.

    Article  PubMed  CAS  Google Scholar 

  24. Umar, S., Scott, J., Sellin, J. H., Dubinsky, W. P., and Morris, A. P. (2000) Murine colonic mucosa hyperproliferation. I. Elevated CFTR expression and enhanced cAMP-dependent Cl secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G753–764.

    PubMed  CAS  Google Scholar 

  25. Lucas, M. L. (2008) Enterocyte chloride and water secretion into the small intestine after enterotoxin challenge: Unifying hypothesis or intellectual dead end? J. Physiol. Biochem. 64, 69–88.

    Article  PubMed  CAS  Google Scholar 

  26. Veeze, H. J., Sinaasappel, M., Bijman, J., Bouquet, J., and de Jonge, H. R. (1991) Ion transport abnormalities in rectal suction biopsies from children with cystic fibrosis. Gastroenterology 101, 398–403.

    PubMed  CAS  Google Scholar 

  27. Mall, M., Bleich, M., Schürlein, M., Kühr, J., Seydewitz, H. H., Brandis, M., Greger, R., and Kunzelmann, K. (1998) Cholinergic ion secretion in human colon requires coactivation by cAMP. Am. J. Physiol. Gastrointest. Liver Physiol. 275, G1274–1281.

    CAS  Google Scholar 

  28. Mall, M., Hirtz, S., Gonska, T., and Kunzelmann, K. (2004) Assessment of CFTR function in rectal biopsies for the diagnosis of cystic fibrosis. J. Cyst. Fibros. 3, 165–169.

    Article  PubMed  CAS  Google Scholar 

  29. Hirtz, S., Gonska, T., Seydewitz, H. H., Thomas, J., Greiner, P., Kuehr, J., et al. (2004) CFTR Cl channel function in native human colon correlates with the genotype and phenotype in cystic fibrosis. Gastroenterology 127, 1085–1095.

    Article  PubMed  CAS  Google Scholar 

  30. Derichs, N., Knoll, J., Hyde, R., Pedemonte, N., Galietta, L. V., and Ballmann, M. (2009) Preclinical evaluation of CFTR modulators in ex vivo human rectal tissue. Pediatr. Pulmonol. 44, 292.

    Google Scholar 

  31. de Jonge, H. R., Ballmann, M., Veeze, H. J., Bronsveld, I., Stanke, F., Tümmler, B., et al. (2004) Ex vivo CF diagnosis by intestinal current measurements (ICM) in small aperture, circulating Ussing chambers. J. Cyst. Fibros. 3, 159–163.

    Article  PubMed  Google Scholar 

  32. Stanke, F., Ballmann, M., Bronsveld, I., Dörk, T., Gallati, S., Laabs, U., et al. (2008) Diversity of the basic defect of homozygous CFTR mutation genotypes in humans. J. Med. Genet. 45, 47–54.

    Article  PubMed  CAS  Google Scholar 

  33. Du, M., Jones, J. R., Lanier, J., Keeling, K. M., Lindsey, J. R., Tousson, A., et al. (2002) Aminoglycoside suppression of a premature stop mutation in a Cftr–/– mouse carrying a human CFTR-G542X transgene. J. Mol. Med. 80, 595–604.

    Article  PubMed  CAS  Google Scholar 

  34. Du, M., Keeling, K. M., and Fan, L. (2006) Clinical doses of amikacin provide more effective suppression of the human CFTR-G542X stop mutation than gentamicin in a transgenic CF mouse model. J. Mol. Med. 84, 573–582.

    Article  PubMed  CAS  Google Scholar 

  35. Du, M., Liu, X., Welch, E. M., Hirawat, S., Peltz, S. W., and Bedwell, D. M. (2008) PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc. Natl. Acad. Sci. USA 105, 2064–2069.

    Article  PubMed  CAS  Google Scholar 

  36. Du, M., Keeling, K. M., Fan, L., Liu, X., and Bedwell, D. M. (2009) Poly-L-aspartic acid enhances and prolongs gentamicin-mediated suppression of the CFTR-G542X mutation in a cystic fibrosis mouse model. J. Biol. Chem. 284, 6885–6892.

    Article  PubMed  CAS  Google Scholar 

  37. Clancy, J. P., Rowe, S. M., Bebok, Z., Aitken, M. L., Gibson, R., Zeitlin, P., et al. (2007) No detectable improvements in cystic fibrosis transmembrane conductance regulator by nasal aminoglycosides in patients with cystic fibrosis with stop mutations. Am. J. Respir. Cell Mol. Biol. 37, 57–66.

    Article  PubMed  CAS  Google Scholar 

  38. Davidson, H., Wilson, A., Gray, R. D., Horsley, A., Pringle, I. A., McLachlan, G., et al. (2009) An immunocytochemical assay to detect human CFTR expression following gene transfer. Mol. Cell. Probes 23, 272–280.

    Article  PubMed  CAS  Google Scholar 

  39. Harris, C. M., Mendes, F., Dragomir, A., Doull, I. J., Carvalho-Oliveira, I., Bebok, Z., et al. (2004) Assessment of CFTR localisation in native airway epithelial cells obtained by nasal brushing. J. Cyst. Fibros. 3, 43–48.

    Article  PubMed  CAS  Google Scholar 

  40. Wilschanski, M., Yahav, Y., Yaacov, Y., Blau, H., Bentur, L., Rivlin, J., et al. (2003) Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N. Engl. J. Med. 349, 1433–1441.

    Article  PubMed  CAS  Google Scholar 

  41. Ma, T., Vetrivel, L., Yang, H., Pedemonte, N., Zegarra-Moran, O., Galietta, L. J., et al. (2002) High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening. J. Biol. Chem. 277, 37235–37241.

    Article  PubMed  CAS  Google Scholar 

  42. Yang, H., Shelat, A. A., Guy, R. K., Gopinath, V. S., Ma, T., Du, K., et al. (2003) Nanomolar affinity small molecule correctors of defective Delta F508-CFTR chloride channel gating. J. Biol. Chem. 278, 35079–35085.

    Article  PubMed  CAS  Google Scholar 

  43. Welch, E. M., Barton, E. R., Zhuo, J., Tomizawa, Y., Friesen, W. J., Trifillis, P., et al. (2007) PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87–91.

    Article  PubMed  CAS  Google Scholar 

  44. Robert, R., Carlile, G. W., Pavel, C., Liu, N., Anjos, S. M., Liao, J., et al. (2008) Structural analog of sildenafil identified as a novel corrector of the F508del-CFTR trafficking defect. Mol. Pharmacol. 73, 478–489.

    Article  PubMed  CAS  Google Scholar 

  45. Van Goor, F., Straley, K. S., Cao, D., González, J., Hadida, S., Hazlewood, A., et al. (2006) Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L1117–1130.

    Article  PubMed  Google Scholar 

  46. Van Goor, F., Hadida, S., Grootenhuis, P. D., Burton, B., Cao, D., Neuberger, T., et al. (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl. Acad. Sci. USA 106, 18825–18830.

    Article  PubMed  Google Scholar 

  47. Al-Nakkash, L., and Hwang, T. C. (1999) Activation of wild-type and deltaF508-CFTR by phosphodiesterase inhibitors through cAMP-dependent and -independent mechanisms. Pflugers Arch. 437, 553–561.

    Article  PubMed  CAS  Google Scholar 

  48. Hwang, T. C., Wang, F., Yang, I. C., and Reenstra, W. W. (1997) Genistein potentiates wild-type and delta F508-CFTR channel activity. Am. J. Physiol. 273, C988–998.

    PubMed  CAS  Google Scholar 

  49. Wang, W., Bernard, K., Li, G., and Kirk, K. L. (2007) Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. J. Biol. Chem. 282, 4533–4544.

    Article  PubMed  CAS  Google Scholar 

  50. Wang, W., Li, G., Clancy, J. P., and Kirk, K. L. (2005) Activating cystic fibrosis transmembrane conductance regulator channels with pore blocker analogs. J. Biol. Chem. 280, 23622–23630.

    Article  PubMed  CAS  Google Scholar 

  51. Gibson, L. E., and Cooke, R. E. (1959) A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 23, 545–549.

    PubMed  CAS  Google Scholar 

  52. Knowles, M., Gatzy, J., and Boucher, R. (1981) Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N. Engl. J. Med. 305, 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  53. Veeze, H. J., Halley, D. J. J., Bijman, J., de Jongste, J. C., de Jonge, H. R., and Sinaasappel, M. (1994) Determinants of mild clinical symptoms in cystic fibrosis patients – Residual chloride secretion measured in rectal biopsies in relation to the genotype. J. Clin. Invest. 93, 461–466.

    Article  PubMed  CAS  Google Scholar 

  54. Bronsveld, I., Mekus, F., Bijman, J., Ballmann, M., Greipel, J., Hundrieser, J., et al (2000) Residual chloride secretion in intestinal tissue of DF508 homozygous twins and siblings with cystic fibrosis. Gastroenterology 119, 32–40.

    Article  PubMed  CAS  Google Scholar 

  55. Derichs, N., Mekus, F., Bronsveld, I., Bijman, J., Veeze, H. J., von der Hardt, H., et al. (2004) Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated residual chloride secretion does not protect against early chronic Pseudomonas aeruginosa infection in F508del homozygous cystic fibrosis patients. Pediatr. Res. 55, 69–75.

    Article  PubMed  Google Scholar 

  56. Pedemonte, N., Lukacs, G. L., Du, K., Caci, E., Zegarra-Moran, O., Galietta, L. J., et al. (2005) Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J. Clin. Invest. 115, 2564–2571.

    Article  PubMed  CAS  Google Scholar 

  57. Amaral, M. D., and Kunzelmann, K. (2007) Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol. Sci. 28, 334–341.

    Article  PubMed  CAS  Google Scholar 

  58. Verkman, A. S., and Galietta, L. J. (2009) Chloride channels as drug targets. Nat. Rev. Drug Discov. 8, 153–171.

    Article  PubMed  CAS  Google Scholar 

  59. Rowe, S. M., Accurso, F., and Clancy, J. P. (2007) Detection of cystic fibrosis transmembrane conductance regulator activity in early-phase clinical trials. Proc. Am. Thorac. Soc. 4, 387–398.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MJH acknowledges the generous support from Mukoviszidose e.V. (N03/07), Innovative Medizinische Förderung Münster (HU 1 1 01 03), and EuroCare CF (LSHM-CT-2005-018932). The expert technical help of Tatjana v. Massenbach is highly appreciated.

ND acknowledges the financial support from Christiane Herzog Stiftung and Mukoviszidose e.V. ND and IB acknowledge the cooperation within the ECFS Diagnostic Network Working Group and IB acknowledges R.A. de Nooijer for technical assistance with NPD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Hug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hug, M.J., Derichs, N., Bronsveld, I., Clancy, J.P. (2011). Measurement of Ion Transport Function in Rectal Biopsies. In: Amaral, M., Kunzelmann, K. (eds) Cystic Fibrosis. Methods in Molecular Biology, vol 741. Humana Press. https://doi.org/10.1007/978-1-61779-117-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-117-8_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-116-1

  • Online ISBN: 978-1-61779-117-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics