Skip to main content

Investigation of Peptide Biomarker Stability in Plasma Samples Using Time-Course MS Analysis

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 728))

Abstract

Peptide biomarkers in plasma or serum are subject to proteolytic degradation caused by intrinsic peptidase activities, resulting in a potential barrier in translating a discovered biomarker into clinical application. This chapter describes a method using time-course MALDI-TOF MS analysis to investigate the stability of a plasma peptide biomarker under a variety of preanalytical situations. A synthesized peptide with the same primary sequence as a potential endogenous biomarker is spiked into a blood sample, and the sample is incubated over time at r.t. (25  ±  1°C) or other preanalytical situations. At a specific period of incubation time, the sample is quenched with the addition of acid with or without an internal control peptide. The spiked peptides in the sample are extracted with one of three procedures for highly soluble, moderately soluble, or essentially insoluble peptides. The peptide samples are then analyzed using MALDI-TOF MS. The abundance changes of the peptide biomarker are monitored by time-course changes of the mass spectra. These changes over-time are measured and fitted to a first-order degradation reaction so that stability of the peptide biomarker (half-life) can be calculated. Kinetics analysis of both parent and shorter (daughter) peptides are also possible by fitting to a sequential multiple-step reaction (SMSR) model. This optimized method facilitates evaluation of biomarker stability, and helps to define sample handling and analytical processing steps that contribute to instability of measured peptide biomarker(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     For Research Use Only, Not For Clinic Diagnostics. BD P800 tube is to stabilize metabolic bio-active peptides such as GLP-1, GIP, Glucagon and Ghrelin.

References

  1. Anderson NL, Anderson NG (2002) The Human proteome-history, character, and diagnostic prospects. Mol. Cell Proteomics 1, 845–866.

    Article  PubMed  CAS  Google Scholar 

  2. Omen GS, States DJ, Adamski M et al (2005) Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly available database. Proteomics 5, 3226–3245.

    Article  Google Scholar 

  3. States DJ, Omenn GS, Blackwell TW et al (2006) Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat Biotechnol. 24, 333–338.

    Article  PubMed  CAS  Google Scholar 

  4. Greeing DW, and Simpson RJ (2009) A centrifugal ultrafiltration strategy for isolating the low-molecular weight (≤25 k) component of human plasma proteome. J. Proteomics, 73, 637–648.

    Article  Google Scholar 

  5. Aebersold R, Anderson L, Caprioli R et al (2005) Perspective: a program to improve protein biomarker discovery for cancer. J. Proteome Res. 4, 1104–1109.

    Article  PubMed  CAS  Google Scholar 

  6. Hortin GL (2006) The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome. Clin. Chem. 52, 1223–1237.

    Article  PubMed  CAS  Google Scholar 

  7. Ewers M, Mielke MM, Hampel H (2010) Blood-based biomarkers of microvascular pathology in Alzheimer’s disease. Exp. Gerontol, 45, 75–79.

    Article  PubMed  CAS  Google Scholar 

  8. Villanueva J, Martorella AJ, Lawlor K et al (2006) Serum peptidome patters that distinguish metastatic thyroid carcinoma from cancer-free controls are unbiased by gender and age. Mol. Cell Proteomics 5,1840–1852.

    Article  PubMed  CAS  Google Scholar 

  9. Mor G, Visintin I, Lai Y et al (2007) Serum protein markers for early detection of ovarian cancer. PNAS 102, 7677–7682.

    Article  Google Scholar 

  10. Lin Y, Goedegebuure PS, Tan MCB et al (2006) Proteins associated with disease and clinical course in pancreas cancer: a proteomic analysis of plasma in surgical patients. J. Proteomce Res. 5, 2169–2176.

    Article  CAS  Google Scholar 

  11. Bensalah K, Lotan Y, Karam JA et al (2008) New circulating biomarkers for prostate cancer. Prostate Cancer and Prostatic Diseases 11, 112–120.

    Article  PubMed  CAS  Google Scholar 

  12. Metz TO, Qian W-J, Jacobs JM et al (2008) Application of proteomics in the discovery of candidate protein biomarkers in a diabetes autoantibody standardization program sample subset. J. Proteome Res. 7, 698–707.

    Article  PubMed  CAS  Google Scholar 

  13. Lorenzo O, Martín-Ventura JL, Blanco-Colio LM et al (2009) The proteomic approach in the development of prognostic biomarkers in atherothrombosis. Recent Pat. Cardiovasc Drug Discov. 4, 25–30.

    Article  PubMed  CAS  Google Scholar 

  14. Fu Q, Van Eyk JE (2006) Proteomics and heart disease: identifying biomarkers of clinical utility. Expert Rev. Proteomics 3, 237–49.

    Article  PubMed  CAS  Google Scholar 

  15. Rosalki SB, Roberts R, Katus HA et al (2004) Cardiac biomarkers for detection of myocardial infarction: perspectives from past to present. Clin. Chem. 50, 2205–2213.

    Article  PubMed  CAS  Google Scholar 

  16. Diamandis EP (2006) Peptidomics for cancer diagnostics: present and future. J. Proteome Res. 5, 2079–2082.

    Article  PubMed  CAS  Google Scholar 

  17. Yi J, Kim C, Gelfand CA (2007) Inhibition of intrinsic proteolytic activities moderates preanalytical variability and instability of human plasma. J. Proteome Res. 6, 1768–1781.

    Article  PubMed  CAS  Google Scholar 

  18. Rai AJ, Gelfand CA, Haywood BC, et al (2005) HUPO plasma proteome project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5, 3262–3277.

    Article  PubMed  CAS  Google Scholar 

  19. Yi J, Craft D, Gelfand CA (2011) Minimizing Pre-analytical and Analytical Variability in Plasma Proteomics using MALDI-TOF MS. Ed. Simpson RJ, Greening DW, Serum/Plasma Proteomics, Methods Mol Biol 728, Humana Press.

    Google Scholar 

  20. Yi J, Liu Z, Craft D et al (2008) Intrinsic peptidase activities causes a Sequential Multi-Step Reaction (SMSR) in digestion of human plasma peptides. J. Proteome Res. 7, 5112–5118.

    Article  PubMed  CAS  Google Scholar 

  21. Fujii K, Nakano T, Kawmura T et al (2004) Multidimensional protein profiling technology and its application to human plasma proteome. J. Proteome Res. 3, 712–718.

    Article  PubMed  CAS  Google Scholar 

  22. Baumann S, Ceglarek U, Fiedler GM et al (2005) Standardized approach to proteome profiling of human serum based on magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin. Chem. 51, 973–980.

    Article  PubMed  CAS  Google Scholar 

  23. Villanueva J, Shaffer DR, Phiip I et al (2006) Differential exoprotease activities confer tumor-specific serum peptidome patters. J. Clin. Invest. 116, 271–284.

    Article  PubMed  CAS  Google Scholar 

  24. Penno MAS, Ernst M, Hoffmann P (2009) Optimal preparation methods for automated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling of low molecular weight proteins and peptides. Rapid Comm. Mass Spec. 23, 2656–2662.

    Article  CAS  Google Scholar 

  25. Tirumalai RS, Chan KC, Prieto DA et al (2003) Characterization of the low Molecular Weight Human Serum Proteome. Mol. Cell Proteomics 2, 1096–1103.

    Article  PubMed  CAS  Google Scholar 

  26. Annesley TM (2003) Ion suppression in mass spectrometry. Clin. Chem. 49, 1041–1044.

    Article  PubMed  CAS  Google Scholar 

  27. Pikal-Cleland KA, Rodriguez-Hornedo N, Amidon GL et al (2000) Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric beta-galactosidase. Arch. Biochem. & Biophy. 384, 398–406.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the encouragement and support of our proteomics program from Robert Pierce. We are also thankful for continuous supports and helps from Frank Augello, Dr. Kesava Nagar-Anthal, Dr. Paul Holmes, Dr. David Warunek, Lena Khumush, and Lisa Gevirtz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizu Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yi, J., Liu, Z., Gelfand, C.A., Craft, D. (2011). Investigation of Peptide Biomarker Stability in Plasma Samples Using Time-Course MS Analysis. In: Simpson, R., Greening, D. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 728. Humana Press. https://doi.org/10.1007/978-1-61779-068-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-068-3_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-067-6

  • Online ISBN: 978-1-61779-068-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics