Skip to main content

PET and PET/CT in the Management of Thyroid Cancer

  • Protocol
  • First Online:
Positron Emission Tomography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 727))

Abstract

The introduction of PET(-CT) has brought about a major paradigm shift in the management of thyroid carcinoma, especially from the diagnostic standpoint. From the viewpoint of patient management, the areas where it has made significant impact include the following: (1) the detection of disease focus in patients with differentiated thyroid carcinoma with elevated Tg levels and negative radioiodine scan. When localized disease is identified with F-18 FDG–PET-CT, surgery or focused radiotherapy could be utilized to eradicate the tumor; (2) the localization of disease in patients of MTC with elevated serum calcitonin levels; (3) the detection of unsuspected focal F-18 FDG uptake in the thyroid in patients undergoing whole body F-18 FDG PET for a different indication. This would prompt a workup to rule out thyroid carcinoma. The use of I-124 is evolving at this time and has been of great promise with regard to (a) its better efficacy of lesion detection and (b) the ability to provide lesion-specific dosimetry. In addition, F-18 FDG PET appears to be of potential value in patients with thyroid lymphoma in making the initial diagnosis, monitoring therapeutic response, and assessing for residual disease and/or recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen, M.S., Arslan, N., Dehdashti, F., et al. (2001) Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Surgery 130(6), 941–6.

    Article  PubMed  CAS  Google Scholar 

  2. Kang, K.W., Kim, S.K., Kang, H.S., et al. (2003) Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. J Clin Endocrinol Metab 88(9), 4100–4.

    Article  PubMed  CAS  Google Scholar 

  3. Kim, T.Y., Kim, W.B., Ryu, J.S., et al. (2005) 18F-fluorodeoxyglucose uptake in thyroid from positron emission tomogram (PET) for evaluation in cancer patients: high prevalence of malignancy in thyroid PET incidentaloma. Laryngoscope 115(6), 1074–8.

    Article  PubMed  Google Scholar 

  4. Are, C., Hsu, J.F., Schoder, H., et al. (2007) FDG-PET detected thyroid incidentalomas: need for further investigation. Ann Surg Oncol 14(1), 239–47.

    Article  PubMed  Google Scholar 

  5. Kurata, S., Ishibashi, M., Hiromatsu, Y., et al. (2007) Diffuse and diffuse-plus-focal uptake in the thyroid gland identified by using FDG-PET: prevalence of thyroid cancer and Hashimoto’s thyroiditis. Ann Nucl Med 21(6), 325–30.

    Article  PubMed  Google Scholar 

  6. Chen, Y.K., Ding, H.J., Chen, K.T., et al. (2005) Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for cancer screening in healthy subjects. Anticancer Res 25(2B), 1421–6.

    PubMed  Google Scholar 

  7. Yi, J.G., Marom, E.M., Munden, R.F., et al. (2005) Focal uptake of fluorodeoxyglucose by the thyroid in patients undergoing initial disease staging with combined PET/CT for non-small cell lung cancer. Radiology 236(1), 271–5.

    Article  PubMed  Google Scholar 

  8. Choi, J.Y., Lee, K.S., Kim, H.J., et al. (2006) Focal thyroid lesions incidentally identified by integrated 18FFDG PET/CT: clinical significance and improved characterization. J Nucl Med 47(4), 609–15.

    PubMed  Google Scholar 

  9. Chu, Q.D., Connor, M.S., Lilien, D.L., et al. (2006) Positron emission tomography (PET) positive thyroid incidentaloma: the risk of malignancy observed in a tertiary referral center. Am Surg 72(3), 272–5.

    PubMed  Google Scholar 

  10. King, D.L., Stack, B.C. Jr., Spring, P.M., et al. (2007) Incidence of thyroid carcinoma in fluorodeoxyglucose positron emission tomography-positive thyroid incidentalomas. Otolaryngol Head Neck Surg 137(3), 400–4.

    Article  PubMed  Google Scholar 

  11. Bogsrud, T.V., Karantanis, D., Nathan, M.A., et al. (2007) The value of quantifying 18F-FDG uptake in thyroid nodules found incidentally on whole-body PET-CT. Nucl Med Commun 28(5), 373–81.

    Article  PubMed  Google Scholar 

  12. Nam, S.Y., Roh, J.L., Kim, J.S., et al. (2007) Focal uptake of (18)F-fluorodeoxyglucose by thyroid in patients with nonthyroidal head and neck cancers. Clin Endocrinol (Oxf) 67(1), 135–9.

    Article  Google Scholar 

  13. Boerner, A.R., Voth, E., Theissen, P., et al. (1998) Glucose metabolism of the thyroid in Graves’ disease measured by F-18-fluorodeoxyglucose positron emission tomography. Thyroid 8, 765–72.

    Article  PubMed  CAS  Google Scholar 

  14. Boerner, A.R., Voth, E., Theissen, P., et al. (2000) Glucose metabolism of the thyroid in autonomous goiter measured by F-18-FDG-PET. Exp Clin Endocrinol Diabetes 108, 191–6.

    Article  PubMed  CAS  Google Scholar 

  15. Karantanis, D., Bogsrud, T.V., Wiseman, G.A., et al. (2007) Clinical significance of diffusely increased 18F-FDG uptake in the thyroid gland. J Nucl Med 48, 896–901.

    Article  PubMed  CAS  Google Scholar 

  16. Basu, S., Li, G., Bural, G., Alavi, A. (2008) Fluorodeoxyglucose positron emission tomography (FDG-PET) and PET/computed tomography imaging characteristics of thyroid lymphoma and their potential clinical utility. Acta Radiol 16, 1–4.

    Google Scholar 

  17. Burguera, B., Gharib, H. (2000) Thyroid incidentalomas: prevalence, diagnosis, significance, and management. Endocrinol Metab Clin North Am 29(1), 187–203.

    Article  PubMed  CAS  Google Scholar 

  18. Nakhjavani, M.K., Gharib, H., Goellner, J.R., et al. (1997) Metastasis to the thyroid gland: a report of 43 cases. Cancer 79(3), 574–8.

    Article  PubMed  CAS  Google Scholar 

  19. Basu, S., Alavi, A. (2007) Metastatic malignant melanoma to the thyroid gland detected by FDG-PET imaging. Clin Nucl Med 32(5), 388–9.

    Article  PubMed  Google Scholar 

  20. van Tol, K.M., Jager, P.L., Piers, D.A., et al. (2002) Better yield of (18)fluorodeoxyglucose-positron emission tomography in patients with metastatic differentiated thyroid carcinoma during thyrotropin stimulation. Thyroid 12(5), 381–7.

    Article  PubMed  Google Scholar 

  21. Chin, B.B., Patel, P., Cohade, C., et al. (2004) Recombinant human thyrotropin stimulation of fluoro-d-glucose positron emission tomography uptake in well-differentiated thyroid carcinoma. J Clin Endocrinol Metab 89(1), 91–5.

    Article  PubMed  CAS  Google Scholar 

  22. Parkin, M.D., Pisani, P., Ferlay, J. (1999) Global cancer statistics. Cancer J Clin 49, 33–64.

    Article  CAS  Google Scholar 

  23. Hundahl, S.A., Fleming, I.D., Fremgen, A.M., et al. (1998) A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the US, ’85–’95. Cancer 83, 2638–48.

    Article  PubMed  CAS  Google Scholar 

  24. Iwata, M., Kasagi, K., Misaki, T., et al. (2004) Comparison of whole-body 18F-FDG PET, 99mTc-MIBI SPECT, and post-therapeutic 131I-Na scintigraphy in the detection of metastatic thyroid cancer. Eur J Nucl Med Mol Imaging 31(4), 491–8.

    Article  PubMed  CAS  Google Scholar 

  25. Chung, J-K, So, Y., Lee, J.S., et al. (1999) Value of FDG-PET in papillary thyroid carcinoma with negative 131-I whole-body scan.J Nucl Med 40, 986–92.

    PubMed  CAS  Google Scholar 

  26. Yeo, J.S., Chung, J.K., So, Y., et al. (2001) F-18-fluoro-deoxyglucose positron emission tomography as a presurgical evaluation modality for I-131 negative thyroid carcinoma patients with local recurrence in cervical lymph nodes. Head Neck 23, 94–103.

    Article  PubMed  CAS  Google Scholar 

  27. Nahas, Z., Goldenberg, D., Fakhry, C., et al. (2005) The role of positron emission tomography/computed tomography in the management of recurrent papillary thyroid carcinoma. Laryngoscope 115, 237–43.

    Article  PubMed  Google Scholar 

  28. Hall, N., Kloos, R.T. (2007) PET Imaging in differentiated thyroid cancer: where does it fit and how do we use it. Arq Bras Endocrinol Metabol 51(5), 793–805.

    Article  PubMed  Google Scholar 

  29. Urhan, M., Mavi, A., Alavi, A., Nanni, C. (2008) Positron emission tomography and thyroid cancer. PET Clin 2, 295–304.

    Article  Google Scholar 

  30. Joensuu, H., Ahonen, A. (1987) Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 28, 910–4.

    PubMed  CAS  Google Scholar 

  31. Cohen, J.B., Kalinyak, J.E., McDougall, I.R. (2003) Modern management of diff­erentiated thyroid cancer. Cancer Biother Radiopharm 18(5), 689–705.

    Article  PubMed  Google Scholar 

  32. Feine, U., Lietzenmayer, R., Hanke, J.P., Held, J., Wohrle, H., Muller-Schauenburg, W. (1996) Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 37, 1468–72.

    PubMed  CAS  Google Scholar 

  33. Grünwald, F., Menzel, C., Bender, H., et al. (1997) Comparison of 18FDG-PET with 131iodine and 99mTc-sestamibi scintigraphy in differentiated thyroid cancer. Thyroid 7, 327–35.

    Article  PubMed  Google Scholar 

  34. Conti, P.S., Durski, J.M., Bacqai, F., Grafton, S.T., Singer, P.A. (1999) Imaging of locally recurrent and metastatic thyroid cancer with positron emission tomography. Thyroid 9, 797–804.

    Article  PubMed  CAS  Google Scholar 

  35. Schluter, B., Bohuslavizki, K.H., Beyer, W., Plotkin, M., Buchert, R., Clausen, M. (2001) Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan.J Nucl Med 42, 71–6.

    PubMed  CAS  Google Scholar 

  36. Grunwald, F., Kalicke, T., Feine, U., et al. (1999) Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 26, 1547–52.

    Article  PubMed  CAS  Google Scholar 

  37. McDougal, I.R., Davidson, J., Segall, S.M. (2001) Positron emission tomography of the thyroid, with an emphasis on thyroid cancer. Nucl Med Commun 22, 485–92.

    Article  Google Scholar 

  38. van Tol, K.M., Jager, P.L., Piers, D.A., et al. (2002) Better yield of (18)fluorodeoxyglucose positron emission tomography in patients with metastatic differentiated thyroid carcinoma during thyrotropin stimulation. Thyroid 715(12), 381–7.

    Google Scholar 

  39. Moog, F., Linke, R., Manthey, N., et al. (2000) Influence of thyroid-stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma. J Nucl Med 41, 1989–95.

    PubMed  CAS  Google Scholar 

  40. Petrich, T., Borner, A.R., Weckesser, E., et al. (2001) Follow-up of thyroid cancer patients using rhTSH: preliminary results. Nuklearmedizin 40, 7–14.

    PubMed  CAS  Google Scholar 

  41. Palmedo, H., Bucerius, J., Joe, A., et al. (2006) Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 47, 616–24.

    PubMed  Google Scholar 

  42. Zoller, M., Kohlfuerst, S., Igerc, I., et al. (2007) Combined PET/CT in the follow-up of differentiated thyroid carcinoma: what is the impact of each modality. Eur J Nucl Med Mol Imaging 34, 487–95.

    Article  PubMed  Google Scholar 

  43. Iagaru, A., Kalinyak, J.E., McDougall, I.R. (2007) F-18 FDG PET/CT in the management of thyroid cancer. Clin Nucl Med 32, 690–5.

    Article  PubMed  Google Scholar 

  44. Shammas, A., Degirmenci, B., Mountz, J.M., et al. (2007) 18F-FDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer. J Nucl Med 48, 221–6.

    PubMed  CAS  Google Scholar 

  45. Wang, W., Macapinlac, H., Larson, S.M., et al. (1999) [18F]-2-fluoro-2-deoxy-d-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131)I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 84, 2291–302.

    Article  PubMed  CAS  Google Scholar 

  46. Grünwald, F., Menzel, C., Bender, H., et al. (1998) Redifferentiation therapy-induced radioiodine uptake in thyroid cancer. J Nucl Med 39, 1903–6.

    PubMed  Google Scholar 

  47. Schonberger, J., Ruschhoff, J., Grimm, D., et al. (2002) Glucose transporter-1 gene expression is related to thyroid neoplasm with an unfavorable prognosis: an immunohistochemical study. Thyroid 12, 747–54.

    Article  PubMed  Google Scholar 

  48. Lowe, V.J., Mullan, B.P., Hay, I.D., et al. (2003) 18F-FDG PET of patients with Hürthle cell carcinoma. J Nucl Med 44(9), 1402–6.

    PubMed  Google Scholar 

  49. Robbins, R.J., Wan, Q., Grewal, R.K., et al. (2006) Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-d-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 91, 498–505.

    Article  PubMed  CAS  Google Scholar 

  50. Reimer, S., Adler, L.P., Bloom, A.D. (1998) Prospective evaluation of PET-FDG in FNA indeterminate thyroid nodules. J Nucl Med 39, 123.

    Google Scholar 

  51. Geus-Oei, L.F., Pieters, G.F., Bonenkamp, J.J., et al. (2006) 18FFDG PET reduces unnecessary hemithyroidectomies for thyroid nodules with inconclusive cytologic results.J Nucl Med 47, 770–5.

    PubMed  Google Scholar 

  52. Kim, J.M., Ryu, J.S., Kim, T.Y., et al. (2007) 18F-luorodeoxyglucosepositron emission tomography does not predict malignancy in thyroid nodules cytologically diagnosed as follicular neoplasm. J Clin Endocrinol Metab 92(5), 1630–4.

    Article  PubMed  CAS  Google Scholar 

  53. Kresnik, E., Gallowitsch, H.J., Mikosch, P., et al. (2003) Fluorine-18-fluorodeoxyglucose positron emission tomography in the preoperative assessment of thyroid nodules in an endemic goiter area. Surgery 133, 294–9.

    Article  PubMed  Google Scholar 

  54. Robbins, R.J., Hill, R.H., Wang, W., et al. (2000) Inhibition of metabolic activity in papillary thyroid carcinoma by a somatostatin analogue. Thyroid 10, 177–83.

    Article  PubMed  CAS  Google Scholar 

  55. Erdi, Y.E., Macapinlac, H.A., Larson, S.M., et al. (1999) Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Positron Imaging 2, 41–6.

    Article  PubMed  Google Scholar 

  56. Schirrmeister, H., Guhlman, A., Elsner, K., et al. (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18-F PET. J Nucl Med 40, 1623–9.

    PubMed  CAS  Google Scholar 

  57. Eschmann, S.M., Reischl, G., Bilger, K., et al. (2002) Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging 29, 760–7.

    Article  PubMed  CAS  Google Scholar 

  58. Pentlow, K.S., Graham, M.C., Lambrecht, R.M., et al. (1991) Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys 18, 357–66.

    Article  PubMed  CAS  Google Scholar 

  59. Pentlow, K.S., Graham, M.C., Lambrecht, R.M., et al. (1996) Quantitative imaging of iodine-124 with PET. J Nucl Med 37, 1557–62.

    PubMed  CAS  Google Scholar 

  60. Rault, E., Vandenberghe, S., Van Holen, R., et al. (2007) Comparison of image quality of different iodine isotopes (I-123, I-124, and I-131). Cancer Biother Radiopharm 22, 423–30.

    Article  PubMed  Google Scholar 

  61. Freudenberg, L.S., Antoch, G., Jentzen, W., et al. (2004) Value of I-124-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 14, 2092–8.

    Article  PubMed  CAS  Google Scholar 

  62. Freudenberg, L.S., Jentzen, W., Gorges, R., et al. (2007) I-124-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin 46, 121–8.

    PubMed  CAS  Google Scholar 

  63. Freudenberg, L.S., Jentzen, W., Marlowe, R.J., et al. (2007) 124-iodine positron emission tomography/computed tomography dosimetry in pediatric patients with differentiated thyroid cancer. Exp Clin Endocrinol Diabetes 115, 690–3.

    Article  PubMed  CAS  Google Scholar 

  64. Sgouros, G., Kolbert, K.S., Sheikh, A., et al. (2004) Patient-specific dosimetry for I-131 thyroid cancer therapy using I-124 PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 45, 1366–72.

    PubMed  CAS  Google Scholar 

  65. Kolbert, K.S., Pentlow, K.S., Pearson, J.R., et al. (2007) Prediction of absorbed dose to normal organs in thyroid cancer patients treated with I-131 by use of I-124 PET and 3-dimensional internal dosimetry software.J Nucl Med 48, 143–9.

    PubMed  CAS  Google Scholar 

  66. Ansell, S.M., Grant, C.S., Habermann, T.M. (1999) Primary thyroid lymphoma. Semin Oncol 26, 316–23.

    PubMed  CAS  Google Scholar 

  67. Honing, M.L., Seldenrijk, C.A., de Maat, C.E. (1998) Primary thyroid lymphoma. Neth J Med 52, 75–8.

    Article  PubMed  CAS  Google Scholar 

  68. Derringer, G.A., Thompson, L.D., Frommelt, R.A., et al. (2000) Malignant lymphoma of the thyroid gland: a clinicopathologic study of 108 cases. Am J Surg Pathol 24, 623–39.

    Article  PubMed  CAS  Google Scholar 

  69. Ruggiero, F.P., Frauenhoffer, E., Stack, B.C. (2005) Thyroid lymphoma: a single institution’s experience. Otolaryngol Head Neck Surg 133, 888–96.

    Article  PubMed  Google Scholar 

  70. Kossev, P., Livolsi, V. (1999) Lymphoid lesions of the thyroid: review in light of the revised European–American lym­phoma classification and upcoming World Health Organization classification. Thyroid 9, 1273–80.

    Article  PubMed  CAS  Google Scholar 

  71. Lin, E.C. (2007) FDG PET/CT for assessing therapy response in primary thyroid lymphoma. Clin Nucl Med 32(2), 152–3.

    Article  PubMed  Google Scholar 

  72. Brandt-Mainz, K., Muller, S.P., Gorges, R., et al. (2000) The value of F-18 FDG PET in patients with medullary thyroid cancer. Eur J Nucl Med 27, 490–6.

    Article  PubMed  CAS  Google Scholar 

  73. Szakall, S. Jr., Esik, O., Balzik, G., et al. (2002) F-18-PET detection of lymph node metastases in medullary thyroid carcinoma.J Nucl Med 43(1), 66–71.

    PubMed  Google Scholar 

  74. de Groot, J.W., Links, T.P., Jager, P.L., et al. (2004) Impact of F-18 fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) in patients with biochemical evidence of recurrent or residual medullary thyroid cancer. Ann Surg Oncol 11(8), 786–94.

    Article  PubMed  Google Scholar 

  75. Rubello, D., Rampin, L., Nanni, C., et al. (2008) The role of 18F-FDG PET/CT in detecting metastatic deposits of recurrent medullary thyroid carcinoma: a prospective study. Eur J Surg Oncol 34(5), 581–6.

    Article  PubMed  CAS  Google Scholar 

  76. Musholt, T.J., Musholt, P.B., Dehdashti, F., et al. (1997) Evaluation of fluorodeoxyglucose-positron emission tomographic scanning and its association with glucose transporter expression in medullary thyroid carcinoma and pheochromocytoma: a clinical and molecular study. Surgery 122, 1049–60.

    Article  PubMed  CAS  Google Scholar 

  77. Koopmans, K.P., de Groot, J.W., Plukker, J.T., et al. (2008) 18F-dihydroxyphenylalanine PET in patients with biochemical evidence of medullary thyroid cancer: relation to tumor differentiation. J Nucl Med 49(4), 524–31.

    Article  PubMed  CAS  Google Scholar 

  78. Hoegerle, S., Ghanem, N., Altehoefer, C., et al. (2003) 18F-DOPA positron emission tomography for the detection of glomus tumours. Eur J Nucl Med Mol Imaging 30, 689–94.

    Article  PubMed  CAS  Google Scholar 

  79. Beuthien-Baumann, B., Strumpf, A., Zessin, J., et al. (2007) Diagnostic impact of PET with 18F-FDG, 18F-DOPA and 3-O-methyl-6-[18F]fluoro-DOPA in recurrent or metastatic medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 34, 1604–9.

    Article  PubMed  CAS  Google Scholar 

  80. Grewal, R.K., Lubberink, M., Pentlow, K.S., Larson, S.M. (2007) The Role of Iodine-124-Positron Emission Tomography Imaging in the Management of Patients with Thyroid Cancer. PET Clinics 2(3), 313–20.

    Google Scholar 

  81. Urhan, M., Alavi, A., Nanni, C. (2007) The Evolving Role of Positron Emission Tomography in Patients with Medullary Thyroid Carcinoma. PET Clinics 2(3), 305–11.

    Google Scholar 

  82. Chen, W., Li, G., Parsons, M., Zhuang, H., Alavi, A. (2007) Clinical Significance of Incidental Focal Versus Diffuse Thyroid Uptake on FDG-PET Imaging. PET Clinics 2(3), 321–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Basu, S., Urhan, M., Rosenbaum, J., Alavi, A. (2011). PET and PET/CT in the Management of Thyroid Cancer. In: Juweid, M., Hoekstra, O. (eds) Positron Emission Tomography. Methods in Molecular Biology, vol 727. Humana Press. https://doi.org/10.1007/978-1-61779-062-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-062-1_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-061-4

  • Online ISBN: 978-1-61779-062-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics