Skip to main content

In Vivo Treg Suppression Assays

  • Protocol
  • First Online:
Regulatory T Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 707))

Abstract

To fully examine the functionality of a regulatory T cell (Treg) population, one needs to assess their ability to suppress in a variety of in vivo models. We describe five in vivo models that examine the suppressive capacity of Tregs upon different target cell types. The advantages and disadvantages of each model including resources, time, and technical expertise required to execute each model are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thornton, A. M., and Shevach, E. M. (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production, The Journal of Experimental Medicine 188, 287–296.

    Article  PubMed  CAS  Google Scholar 

  2. Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L., and Powrie, F. (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation, The Journal of Experimental Medicine 190, 995–1004.

    Article  PubMed  CAS  Google Scholar 

  3. Dieckmann, D., Plottner, H., Berchtold, S., Berger, T., and Schuler, G. (2001) Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood, The Journal of Experimental Medicine 193, 1303–1310.

    Article  PubMed  CAS  Google Scholar 

  4. Belkaid, Y. (2007) Regulatory T cells and infection: a dangerous necessity, Nature Reviews 7, 875–888.

    Article  PubMed  CAS  Google Scholar 

  5. Tang, Q., and Bluestone, J. A. (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation, Nature Immunology 9, 239–244.

    Article  PubMed  CAS  Google Scholar 

  6. Bettini, M., and Vignali, D. A. (2009) Regulatory T cells and inhibitory cytokines in autoimmunity, Current Opinion in Immunology 21, 612–618.

    Article  PubMed  CAS  Google Scholar 

  7. Fontenot, J. D., Rasmussen, J. P., Williams, L. M., Dooley, J. L., Farr, A. G., and Rudensky, A. Y. (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3, Immunity 22, 329-341.

    Article  PubMed  CAS  Google Scholar 

  8. Collison, L. W., Workman, C. J., Kuo, T. T., Boyd, K., Wang, Y., Vignali, K. M., Cross, R., Sehy, D., Blumberg, R. S., and Vignali, D. A. (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function, Nature 450, 566–569.

    Article  PubMed  CAS  Google Scholar 

  9. Workman, C. J., and Vignali, D. A. (2005) Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223), Journal of Immunology 174, 688–695.

    CAS  Google Scholar 

  10. Goldrath, A. W., Bogatzki, L. Y., and Bevan, M. J. (2000) Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation, The Journal of Experimental Medicine 192, 557–564.

    Article  PubMed  CAS  Google Scholar 

  11. Cho, B. K., Rao, V. P., Ge, Q., Eisen, H. N., and Chen, J. (2000) Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells, The Journal of Experimental Medicine 192, 549–556.

    Article  PubMed  CAS  Google Scholar 

  12. Allez, M., and Mayer, L. (2004) Regulatory T cells: peace keepers in the gut, Inflammatory Bowel Diseases 10, 666–676.

    Article  PubMed  Google Scholar 

  13. Maloy, K. J., Salaun, L., Cahill, R., Dougan, G., Saunders, N. J., and Powrie, F. (2003) CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms, The Journal of Experimental Medicine 197, 111–119.

    Article  PubMed  CAS  Google Scholar 

  14. Powrie, F., Leach, M. W., Mauze, S., Menon, S., Caddle, L. B., and Coffman, R. L. (1994) Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells, Immunity 1, 553–562.

    Article  PubMed  CAS  Google Scholar 

  15. Mottet, C., Uhlig, H. H., and Powrie, F. (2003) Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells, Journal of Immunology 170, 3939–3943.

    CAS  Google Scholar 

  16. Cahill, R. J., Foltz, C. J., Fox, J. G., Dangler, C. A., Powrie, F., and Schauer, D. B. (1997) Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus, Infection and Immunity 65, 3126–3131.

    PubMed  CAS  Google Scholar 

  17. Yen, D., Cheung, J., Scheerens, H., Poulet, F., McClanahan, T., McKenzie, B., Kleinschek, M. A., Owyang, A., Mattson, J., Blumenschein, W., Murphy, E., Sathe, M., Cua, D. J., Kastelein, R. A., and Rennick, D. (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6, The Journal of Clinical Investigation 116, 1310–1316.

    Article  PubMed  CAS  Google Scholar 

  18. Kohm, A. P., Carpentier, P. A., Anger, H. A., and Miller, S. D. (2002) Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis, Journal of Immunology 169, 4712–4716.

    CAS  Google Scholar 

  19. Selvaraj, R. K., and Geiger, T. L. (2008) Mitigation of experimental allergic encephalomyelitis by TGF-beta induced Foxp3+ regulatory T lymphocytes through the induction of anergy and infectious tolerance, Journal of Immunology 180, 2830–2838.

    CAS  Google Scholar 

  20. Jager, A., Dardalhon, V., Sobel, R. A., Bettelli, E., and Kuchroo, V. K. (2009) Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes, Journal of Immunology 183: 7169–7177.

    Article  Google Scholar 

  21. O’Connor, R. A., Prendergast, C. T., Sabatos, C. A., Lau, C. W., Leech, M. D., Wraith, D. C., and Anderton, S. M. (2008) Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis, Journal of Immunology 181, 3750–3754.

    Google Scholar 

  22. Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B., Sedgwick, J. D., McClanahan, T., Kastelein, R. A., and Cua, D. J. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation, The Journal Of Experimental Medicine 201, 233–240.

    Article  PubMed  CAS  Google Scholar 

  23. Seliger, B., Wollscheid, U., Momburg, F., Blankenstein, T., and Huber, C. (2001) Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells, Cancer Research 61, 1095–1099.

    PubMed  CAS  Google Scholar 

  24. Fidler, I. J. (1973) Selection of successive tumour lines for metastasis, Nature: New Biology 242, 148–149.

    CAS  Google Scholar 

  25. Poste, G., Doll, J., Hart, I. R., and Fidler, I. J. (1980) In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties, Cancer Research 40, 1636–1644.

    PubMed  CAS  Google Scholar 

  26. Turk, M. J., Guevara-Patino, J. A., Rizzuto, G. A., Engelhorn, M. E., Sakaguchi, S., and Houghton, A. N. (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells, The Journal of Experimental Medicine 200, 771–782.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, P., Cote, A. L., de Vries, V. C., Usherwood, E. J., and Turk, M. J. (2007) Induction of postsurgical tumor immunity and T-cell memory by a poorly immunogenic tumor, Cancer Research 67, 6468–6476.

    Article  PubMed  CAS  Google Scholar 

  28. Brunkow, M. E., Jeffery, E. W., Hjerrild, K. A., Paeper, B., Clark, L. B., Yasayko, S. A., Wilkinson, J. E., Galas, D., Ziegler, S. F., and Ramsdell, F. (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse, Nature Genetics 27, 68–73.

    Article  PubMed  CAS  Google Scholar 

  29. Fontenot, J. D., Gavin, M. A., and Rudensky, A. Y. (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells, Nature Immunology 4, 330–336.

    Article  PubMed  CAS  Google Scholar 

  30. Ivanov, I. I., Atarashi, K., Manel, N., Brodie, E. L., Shima, T., Karaoz, U., Wei, D., Goldfarb, K. C., Santee, C. A., Lynch, S. V., Tanoue, T., Imaoka, A., Itoh, K., Takeda, K., Umesaki, Y., Honda, K., and Littman, D. R. (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria, Cell 139, 485–498.

    Article  PubMed  CAS  Google Scholar 

  31. Gaboriau-Routhiau, V., Rakotobe, S., Lecuyer, E., Mulder, I., Lan, A., Bridonneau, C., Rochet, V., Pisi, A., De Paepe, M., Brandi, G., Eberl, G., Snel, J., Kelly, D., and Cerf-Bensussan, N. (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses, Immunity 31, 677–689.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Terrence Geiger and Hongbo Chi for advice and critical discussion and Samir Burns for technical guidance regarding EAE experiments. We are also grateful to Mary Jo Turk for advice and technical guidance regarding the B16 tumor model. We thank Karen Forbes, Tara Moore, Jessica Magwood, and Amy Krause for maintenance and breeding of mouse colonies, Andrea Szymczak-Workman for IBD histological analysis, Richard Cross, Greig Lennon and Stephanie Morgan for FACS, the St Jude VPC Laboratory for histological analyses, the staff of the Shared Animal Resource Center at St Jude for the animal husbandry, Matthew Smeltzer for advice on statistical analysis and the Hartwell Center for Biotechnology and Bioinformatics at St Jude for MOG synthesis and purification. LWC is supported by an Individual NIH NRSA (F32 AI072816). MB is supported by a Juvenile Diabetes Research Foundation International postdoctoral fellowship (3-2009-594). DAAV is supported by the National Institutes of Health (NIH) (AI39480, AI52199, AI072239), Juvenile Diabetes Research Foundation International (1-2004-141 [The Robert and Janice Compton Research Grant, In Honor of Elizabeth S. Compton] and 1-2006-847), a Cancer Center Support CORE grant (CA21765) and the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario A. A. Vignali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Workman, C.J., Collison, L.W., Bettini, M., Pillai, M.R., Rehg, J.E., Vignali, D.A.A. (2011). In Vivo Treg Suppression Assays. In: Kassiotis, G., Liston, A. (eds) Regulatory T Cells. Methods in Molecular Biology, vol 707. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-979-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-979-6_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-978-9

  • Online ISBN: 978-1-61737-979-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics