Skip to main content

Preclinical Tumor Response End Points

  • Chapter
  • First Online:
Tumor Models in Cancer Research

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The first in vivo tumor models were developed in the mid-1960s. These models were mouse leukemia models grown as ascites. The growth pattern was like that of bacteria in vivo and therefore it was possible to apply similar mathematics of growth and response to these tumors as had been worked out for bacteria. Since the development of the murine leukemia models, investigators have devoted a large effort to modeling solid tumors in mice. There are now a variety of models including syngeneic mouse tumors and human tumor xenografts grown as subcutaneous nodules, syngeneic mouse tumors and human tumor xenografts grown in orthotopic sites, models of disseminated disease, ‘‘labeled’’ tumor models that can be visualized using varied technologies, and transgenic tumor models. The value of these models depends upon the application of rigorous experimental design and data analysis. The endpoints used can be in situ or excision. Each of these has advantages and disadvantages to the ‘‘drug hunter’’ searching for improved treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skipper HE. Historic milestones in cancer biology: a few that are important in cancer treatment (revisited). Semin Oncol. 1979;6:506–14.

    PubMed  CAS  Google Scholar 

  2. Skipper HE. Thoughts on cancer chemotherapy and combination modality therapy. JAMA. 1974;230:1033–5.

    Article  PubMed  CAS  Google Scholar 

  3. Skipper HE. Successes and failures at the preclinical level; where now? Seventh Cancer Conference Proc.Philadelphia, PA: JB Lippincott Company; 1973. p. 109–21.

    Google Scholar 

  4. Skipper HE. Kinetics of mammary tumor cell growth and implications for therapy. Cancer. 1971;28:1479–99.

    Article  PubMed  CAS  Google Scholar 

  5. Skipper HE. Cancer chemotherapy is many things: G.H.A. Clowes memorial lecture. Cancer Res. 1971;31:1173–80.

    PubMed  CAS  Google Scholar 

  6. Skipper HE. Improvement of the model systems. Cancer Res. 1969;29:2329–33.

    PubMed  CAS  Google Scholar 

  7. Skipper HE. Biochemical, biological, pharmacologic, toxicologic, kinetics and clinical (subhuman and human) relationships. Cancer. 1968;21:600–10.

    Article  PubMed  CAS  Google Scholar 

  8. Skipper HE. Criteria associated with destruction of leukemia and solid tumor cells in animals. Cancer Res. 1967;27:2636–45.

    PubMed  CAS  Google Scholar 

  9. Himmelfarb P, Thayer PS, Martin H. Growth of colonies of murine leukemia L1210 in vitro. Cancer Chemother Rep 1967;51:451–3.

    Google Scholar 

  10. Wilcox WS, Schabel FM, Skipper HE. Experimental evaluation of potential anticancer agents XV. On the relative rates of growth and host kill of “single” leukemia cells that survive in vivo cytoxan therapy. Cancer Res. 1966;26:1009–14.

    PubMed  CAS  Google Scholar 

  11. Moore GE, Sandberg AA, Ulrich K. Suspension cell culture and in vivo and in vitro chromosome constitution of mouse leukemia L1210. J Natl Cancer Inst. 1966;36:405–21.

    PubMed  CAS  Google Scholar 

  12. Pittlo RF, Schabel FM, Skipper HE. Experimental evaluation of potential anticancer agents. XVI. Basic study of effects of certain anticancer agents on kinetic behavior of model bacterial cell populations. Cancer Chemother Rep. 1965;47:1–26.

    Google Scholar 

  13. Wilcox WS, Griswold DP, Laster WR, Schabel FM, Skipper HE. Experimental evaluation of potential anticancer agents. XVII. Kinetics of growth and regression after treatment of certain solid tumors. Cancer Chemother Rep. 1965;47:27–39.

    PubMed  CAS  Google Scholar 

  14. Skipper HE, Schabel FM, Wilcox WS, Laster WR, Trader MW, Thompson SA. Experimental evaluation of potential anticancer agents. XVIII. Effects of therapy on viability and rate of proliferation of leukemia cells in various anatomic sites. Cancer Chemother Rep. 1965;47:92–64.

    Google Scholar 

  15. Skipper HE. The effects of chemotherapy of the kinetics of leukemic cell behavior. Cancer Res. 1965;25:1544–50.

    PubMed  CAS  Google Scholar 

  16. Chick H. An investigation of the laws of disinfection. J Hyg (London). 1908;8:92–158.

    Article  CAS  Google Scholar 

  17. McCulloch EC. Disinfection and sterilization, 2nd ed.. Philadelphia, PA: Lea and Febiger; 1945.

    Google Scholar 

  18. Davis BD. Bacterial and mycotic infections in man, 3rd ed.. Dubos RJ, editor, Philadelphia, PA: JB Lippincott Company; 1958.

    Google Scholar 

  19. Porter JR. Bacterial chemistry and physiology. New York, NY; John Wiley and Sons, Inc.; 1947.

    Google Scholar 

  20. Wyss O. Chemical factors affecting growth and death. In: Werkman CH, Wilson PW, editors. Bacterial physiology. New York, NY: Academic Press, Inc.; 1951.

    Google Scholar 

  21. Law LW, Dunn TB, Boyle PJ, Miller JH. Observations on the effects of a folic acid antagonists on transplantable lymphoid leukemias in mice. J Natl Cancer Inst. 1949;10:179–95.

    PubMed  CAS  Google Scholar 

  22. Evans VJ, LaRock JF, Yoshida TH, Potter M. A new tissue culture isolation and explanation of the P388 lymphocytic neoplasm in a chemically characterized medium. Exp Cell Res. 1963;32:212–7.

    Article  PubMed  CAS  Google Scholar 

  23. Skipper HE, Schabel FM, Wilcox WS. Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with ‘curability’ of experimental leukemia. Cancer Chemother Rep. 1964;35:1–111.

    PubMed  CAS  Google Scholar 

  24. Skipper HE. Perspectives in cancer chemotherapy: therapeutic design. Cancer Res. 1964;24:1295–302.

    PubMed  CAS  Google Scholar 

  25. Frei E III. Potential for eliminating leukemic cells in childhood acute leukemia (Abstr). Proc Am Assoc Cancer Res. 1964;5:20.

    Google Scholar 

  26. Hananian J, Holland JF, Sheehe P. Intensive chemotherapy of acute lymphocytic leukemia in children (Abstr). Proc Am Assoc Cancer Res. 1965;6:26.

    Google Scholar 

  27. Rall DP. Experimental studies of the blood brain barrier. Cancer Res. 1965;25:1572–7.

    PubMed  CAS  Google Scholar 

  28. Thomas LB. Pathology of leukemia in the brain and meninges: postmortem studies of patients with acute leukemia and of mice inoculated with L1210 leukemia. Cancer Res. 1965;25:1555–71.

    PubMed  CAS  Google Scholar 

  29. Bibby MC. Making the most of rodent tumor systems in cancer Br J Cancer. 1999;79:1633–40.

    Article  PubMed  CAS  Google Scholar 

  30. Waud WR. Murine L1210 and P388 leukemias. In: Teicher B, editor. Anticancer drug development guide: preclinical screening, clinical trials and approval. Totowa, NJ; Humana Press Inc.; 1998. p. 59–74.

    Google Scholar 

  31. Schabel FM Jr, Griswold DJ Jr, Laster WR Jr, Corbett TH, Lloyd HH. Quantitative evaluation of anticancer agent activity in experimental animals. Pharmacol Ther (A). 1977;1:411–35.

    CAS  Google Scholar 

  32. Lloyd HH. Application of tumor models toward the design of treatment schedules for cancer chemotherapy. In: Drewinko B, Humphrey RM, editors. Growth kinetics and biochemical regulation of normal and malignant cells. Williams & Wilkins, Baltimore, MD, 1977. p. 455–69.

    Google Scholar 

  33. Corbett TH, Valeriote F, LoRusso P, Polin L, Panchapor C, Pugh S et al. In vivo methods for screening and preclinical testing. In: Teicher B, editor., Anticancer drug development guide: preclinical screening, clinical trials and approval. Humana Press Inc., Totowa, NJ, 1998. p. 75–99.

    Google Scholar 

  34. Plowman J, Dykes DJ, Hollingshead M, Simpson-Herren L, Ally MC. Human tumor xenograft models in NCI drug development. In: Teicher B, editor. Anticancer drug development guide: preclinical screening, clinical trials and approval. Totowa, NJ: Humana Press Inc.; 1998, p. 101–25.

    Google Scholar 

  35. Teicher BA. Preclinical models for high dose therapy. In: Teicher B, editor, Anticancer drug development guide: preclinical screening, clinical trials and approval. Totowa, NJ: Humana Press Inc.; 1998. p. 145–82.

    Google Scholar 

  36. Corbett TH, Valeriote FA. Rodent models in experimental chemotherapy: In: Kallman RF, editor, The use of rodent tumors in experimental cancer therapy: conclusions and recommendations. New York NY: Pergamon Press; 1987. p. 233–47.

    Google Scholar 

  37. Corbett TH, Valeriote FA, Polin L et al. Discovery of solid tumor active agents using a soft agar colony formation disk diffusion assay. In: Valeriote FA, Corbett TH, Baker LH, editors, Cytotoxic anticancer drugs: models and concepts for drug development. Boston MA: Kluwer Academic Publishers; 1992. p. 33–87.

    Google Scholar 

  38. Norton L, Simon R, Breton HD, Bogden AE. Predicting the course of Gompertzian growth. Nature 1976;264:542.

    Article  PubMed  CAS  Google Scholar 

  39. Norton L, Simon R. The Norton-Simon hypothesis revisited. Cancer Treat Reps. 1986;70:163.

    CAS  Google Scholar 

  40. Griswold DP Jr, Schabel FM Jr, Wilcox WS, Simpson-Herren L, Skipper HE. Success and failure in the treatment of solid tumors. I. effects of cyclophosphamide (NSC-26271) on primary and metastatic plasmacytoma in the hamster. Cancer Chemother Rep. 1968;52:345–87.

    PubMed  Google Scholar 

  41. Hermens AF, Barendsen GW. Changes of cell proliferation characteristics in a rat rhabdomyosarcoma before and after x-irradation. Eur J Cancer. 1969;5:173–89.

    PubMed  CAS  Google Scholar 

  42. Laster WR Jr, et al. Success and failure in the treatment of solid tumors. II. Kinetic parameters and “cell cure” of moderately advanced carcinoma 755. Cancer Chemother Rep. 1969;53:169–88.

    PubMed  CAS  Google Scholar 

  43. van Putten LM, Lelieveld P. Factors determining cell killing by chemotherapeutic agents in vivo. I. Cyclophosphamide. Eur J Cancer. 1970;6:313–21.

    PubMed  CAS  Google Scholar 

  44. Teicher BA, Northey D, Yuan J, Frei E III. High dose therapy/stem cell support: comparison of mice and humans. Int J Cancer. 1996;65:695–9.

    Article  PubMed  CAS  Google Scholar 

  45. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, ArbuckS, Hollinghead M, Sausville EA. Relationships between drug activity in NCI preclinical in vitro & in vivo models & early clinical trials. Br J Cancer 2001;84:1424.

    Article  PubMed  CAS  Google Scholar 

  46. Potter VR. Sequential blocking of metabolic pathways in vivo. Proc Soc Exp Biol Med. 1951;76:41–6.

    PubMed  CAS  Google Scholar 

  47. Elion GB, Singer S, Hitchings GH. Antagonists of nucleic acid derivatives. VIII. Synergism in combinations of biochemically related antimetabolites. J Biol Chem. 1954;208:477–88.

    PubMed  CAS  Google Scholar 

  48. Sartorelli AC. Combination chemotherapy with actinomycin D and ribonuclease: an example of complementary inhibition. Nature. 1964;203:877–8.

    Article  CAS  Google Scholar 

  49. Kaelin WG, Jr. The von Hippel-Lindau gene, kidney cancer and oxygen sensing. J Am Soc Nephrol. 2003;14:2703–11.

    Article  PubMed  Google Scholar 

  50. Sosman JA, Puzanov I, Atkins MB. Opportunities and obstacles to combination targeted therapy in renal cell cancer. Clin Cancer Res. 2007;13 (2 suppl):764s–9s.

    Article  PubMed  CAS  Google Scholar 

  51. Teicher BA, Herman TS, Holden SA, Eder JP. Chemotherapeutic potentiation through interaction at the level of DNA. In: Chou TC, Rideout DC, editors, Synergism and antagonism in chemotherapy. Orlando FL: Academic Press; 1991. p. 541–83.

    Google Scholar 

  52. Teicher BA, Frei E III. Laboratory models to evaluate new agents for the systemic treatment of ling cancer. In: Skarin AT, editor, Multimodality treatment of lung cancer. New York NY: Marcel Dekker Inc.; 2000. p. 301–36.

    Google Scholar 

  53. Tan M, Fang HB, Tian GL, Houghton PJ. Experimental design and sample size determination for testing synergism in drug combination studies based on uniform measures. Stats Med. 2003;22:2091–100.

    Article  Google Scholar 

  54. Grabovsky Y, Tallarida RJ. Isobolographic analysis for combinations of a full and partial agonist: curved isoboles. J Pharmacol Exp Therap. 2004;310:981–6.

    Article  CAS  Google Scholar 

  55. Zhao L, Wientjes MG, Au JLS. Evaluation of combinations chemotherapy: integration of nonlinear regression, curve shift, isobologram and combination index analyses. Clin Cancer Res. 2004;10:7994–8004.

    Article  PubMed  CAS  Google Scholar 

  56. Kong M, Lee JJ. A generalized response surface model with varying relative potency for assessing drug interaction. Biometrics. 2006;62:986–95.

    Article  PubMed  Google Scholar 

  57. Zhao L, Wientjes MG, Au JLS. Evaluation of combination chemotherapy: Integration of Nonlinear Regression, Curve shift, Isobologram, and Combination Index Analyses. Clin Cancer Res. 2004;10:7994–8004.

    Google Scholar 

  58. Levasseur LM, Delon A, Greco WR, Faury P, Bouquet S, Couet W. Development of a new quantitative approach for the isobolographic assessment of the convulsant interaction between perfloxacin and theophylline in rats. Pharmaceut Res. 1998;15:1069–76.

    Article  CAS  Google Scholar 

  59. Greco WR, Faessel H, Levasseur L. The search for cytotoxic synergy between anticancer agents: a case of Dorothy and the ruby slippers? J Natl cancer Inst. 1996;88:699–700.

    Article  PubMed  CAS  Google Scholar 

  60. Berenbaum MC. Correspondence re: WR Greco et al., application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-β-D-arabinofuransylcytosine. Cancer Res. 1992;52:4558–65.

    PubMed  CAS  Google Scholar 

  61. Chou TC. Theoretical basis, experimental design and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.

    Article  PubMed  CAS  Google Scholar 

  62. Steel GG, Peckham MJ. Exploitable mechanisms in combined radiotherapy chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys. 1979;5:85–91.

    Article  PubMed  CAS  Google Scholar 

  63. Berenbaum MC. Synergy, additivism and antagonism in immunosuppression. Clin Exp Immunol. 1977;28:1–18.

    PubMed  CAS  Google Scholar 

  64. Dewey WC, Stone LE, Miller HH, Giblak RE. Radiosensitization with 5-bromodeoxyuridine of Chinese hamster cells x-irradiated during different phases of the cell cycle. Radiat Res. 1977;47:672–88.

    Article  Google Scholar 

  65. Deen DF, Williams MW. Isobologram analysis of x-ray BCNU interactions in vitro. Radiat Res. 1979;79:483–91.

    Article  PubMed  CAS  Google Scholar 

  66. Schabel FM, Trader MW, Laster WR, Wheeler GP, Witt MH. Patterns of resistance and therapeutic synergism among alkylating agents. Antibiot Chemother (Basel). 1978;23:200–15.

    CAS  Google Scholar 

  67. Schabel FM, Griswold DP, Corbett TH, Laster WR, Mayo JG, Lloyd HH. Testing therapeutic hypotheses in mice treated with anticancer drugs that have demonstrated or potential clinical utility for treatment of advanced solid tumors of man. Methods Cancer Res. 1979;17:3–51.

    CAS  Google Scholar 

  68. Schabel FM Jr. Concepts for systemic treatment of micrometastases. Cancer. 1975;35:15–24.

    Article  PubMed  CAS  Google Scholar 

  69. Schabel FM Jr, Griswold DP Jr, Corbett TH, Laster WRJr Increasing the therapeutic response rates to anticancer drugs by applying the basic principles of pharmacology. Cancer. 1984;54:1160–7.

    Article  PubMed  CAS  Google Scholar 

  70. Schabel FM Jr, Simpson-Herren L. Some variables in experimental tumor systems which complicate interpretation of data from in vivo kinetic and pharmacologic studies with anticancer drugs. Antibiot Chemother. 1978;23:113–27.

    PubMed  Google Scholar 

  71. Schabel FM Jr, Griswold DP Jr, Corbett TH, Laster WR. Increasing therapeutic response rates to anticancer drugs by applying the basic principles of pharmacology. Pharmacol Ther. 1983;20:283–305.

    Article  PubMed  CAS  Google Scholar 

  72. Corbett TH, Griswold DP Jr, Roberts BJ, Peckham JC, Schabel FM Jr. Evaluation of single agents and combinations of chemotherapeutic agents in mouse colon carcinomas. Cancer. 1977;40:2660–80.

    Article  PubMed  CAS  Google Scholar 

  73. Corbett TH, Griswold DP Jr, Wolpert MK, Venditti JM, Schabel FM Jr. Design and evaluation of combination chemotherapy trials in experimental animal tumor systems. Cancer Treat Rep. 1979;63:799–801.

    PubMed  CAS  Google Scholar 

  74. Griswold DP Jr, Corbett TH, Schabel FM Jr. Cell kinetics and the chemostherapy of murine solid tumors Antibiot Chemother. 1980;28:28–34.

    CAS  Google Scholar 

  75. Girswold DP, Corbett TH, Schabel FM Jr. Clonogenicity and growth of experimental tumors in relation to developing resistance and therapeutic failure. Cancer Treat Rep. 1981;65 (suppl 2):51–4.

    Google Scholar 

  76. Sugiura K, Stock C. Studies in a tumor spectrum. III. The effect of phosphoramides on the growth of a variety of mouse and rat tumors. Cancer Res. 1955;15:38–51.

    PubMed  CAS  Google Scholar 

  77. Sugiura K, Stock C. Studies in a tumor spectrum. I. comparison of the action of methylbis(2-chloroethyl_amine and bis(2-chloroethyl)aminomethyl-4-methoxymethyl-5-hydroxy-6-methylpyridine) on the growth of a variety of mouse and rat tumors. Cancer. 1952;5:282–315.

    Google Scholar 

  78. Sugiura K, Stock C. Studies in a tumor spectrum. II. The effect of 2,4,6-triethylimino-S-triazine on the growth of a variety of mouse and rat tumors. Cancer Res. 1952;5:979–91.

    CAS  Google Scholar 

  79. DeWys W. A quantitative model for the study of the growth and treatment of a tumor and its metastases with correlation between proliferative state and sensitivity to cyclophosphamide. Cancer Res. 1972;32:367–73.

    PubMed  CAS  Google Scholar 

  80. DeWys W. Studies correlating the growth rate of a tumor and its metastases and providing evidence for tumor-related systemic growth retarding factors. Cancer Res. 1972;32:374–9.

    PubMed  CAS  Google Scholar 

  81. Steel GG, Adams K. Stem cell survival and tumor control in the Lewis lung carcinoma. Cancer Res. 1975;35:1530–5.

    PubMed  CAS  Google Scholar 

  82. Steel GG, Nill RP, Peckham MJ. Combined radiotherapy chemotherapy of Lewis lung carcinoma. Int J Radiat Oncol Biol Phys. 1978;4:49–52.

    Article  PubMed  CAS  Google Scholar 

  83. Gemcitabine HCl (LY188011 HCl) clinical investigational brochure.Indianapolis IN: Eli Lilly and Company; October 1993.

    Google Scholar 

  84. Huang P, Chubb S, Hertel L, Plunkett W. Mechanism of action of 2′,2′ difluorodeocycytidine triphosphate on DNA synthesis. Proc Am Assoc Cancer Res. 1990;25:426 (#2530).

    Google Scholar 

  85. Hertel L, Boder G, Kroin J. Evaluation of the antitumtor acitivity of gemcitabine 2′,2′-difluoro-2′-deoxycytidine. Cancer Res. 1990;50:4417–22.

    PubMed  CAS  Google Scholar 

  86. Bouffard D, Fomparlwer L, Momparler R. Comparison of the antineoplastic activity of 2′,2′-difluorodeocycytidine and cytosine arabinoside against human myeloid and lymphoid leukemia cells. Anticancer Drugs. 1991;2:49–55.

    Article  PubMed  CAS  Google Scholar 

  87. Heinemann V, Hertel L, Grindey G, Plunkett W. Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeocycytidine and 1-beta-D-arabinofuranosyl cytosine Cancer Res. 1988;48:4024–31.

    PubMed  CAS  Google Scholar 

  88. Eckhardt I, Von Hoff D. New drugs in clinical development in the United States. Hematol Oncol Clin N Amer. 1994;8:300–32.

    Google Scholar 

  89. Anderson H, Lund B, Bach F. Single agent activity of weekly gemcitabine in advanced non small cell lung cancer: a Phase 2 study. J Clin Oncol 1994;12:1821–6.

    Google Scholar 

  90. Gatzemeier U, Shapard F, LeChevalier T et al. Activity of gemcitabine in patients with noon-small cell lung cancer: a multicenter, extended Phase II study. Eur J Cancer. 1996;32A:243–8.

    Article  PubMed  CAS  Google Scholar 

  91. Bertelli P, Mantica C, Farina G, Cobelli S, La Verde N, Gramagna G, et al. Treatment of non small cell lung cancer with vinorelbine. Proc Am Soc Clin Oncol. 1994;13:362.

    Google Scholar 

  92. Bore P, Rahmani R, VanCamfort J. Pharmacokinetics of a new anticancer drug, navelbine, in patients. Cancer Chemother Pharmacol. 1989;23:247–51.

    Article  PubMed  CAS  Google Scholar 

  93. Cros S, Wright M, Morimoto M. Experimental antitumor activity of navelbine. Semin Oncol. 1989;16 Suppl:15–20.

    PubMed  CAS  Google Scholar 

  94. Cvitkovic E. The current and future place of vinorelbine in cancer therapy. Drugs. 1992;44 Suppl 4:33336–45.

    Google Scholar 

  95. Marquet P, Lachatre G, Debord J. Pharmacokinetics of vonorelbine in man. Eur J Clin Pharmacol. 1992;42:545–7.

    Article  PubMed  CAS  Google Scholar 

  96. Navelbine (vinorelbine tartrate) clinical investigational brochure. Burroughs Wellcome Co; October 1995.

    Google Scholar 

  97. Fumoleau P, Delgado F, Delozier T et al. Phase II trial of weekly intravenous venorelbine in first line advanced breast cancer chemotherapy J Clin Oncol. 1993;11:1245–52.

    PubMed  CAS  Google Scholar 

  98. Jehl F, Quoix E, Leveque D. Pharmacokinetics and preliminary metabolite fate of vinorelbine in humans as determined by high performance liquid chromatography. Cancer Res. 1991;51:2073–6.

    PubMed  CAS  Google Scholar 

  99. Lepierre A, Lemarie E, Dabouis G, Garnier G. A phase 2 study of navelbine in the treatment of non-small cell lung cancer. Am J Clin Oncol. 1991;14:115–9.

    Article  Google Scholar 

  100. Herbst RS, Lynch C, Vasconcelles M, Teicher BA, Strauss G, Elias A, Anderson I, Zacarola P, Dang NH, Leong T, Salgia R, Skarin AT. Gemcitabine and vinorelbine in patients with advanced lung cancer: preclinical studies and report of a phase I trial. Cancer Chemother Pharmacol. 2001;48:151–9.

    Article  PubMed  CAS  Google Scholar 

  101. Shih C, Thornton DE. Preclinical pharmacology studies and the clinical development of a novel multi-targeted antifolate, MTA (LY231514). In: Jackman AL, editor. Antifolate drugs in cancer therapy.Totowa NJ: Humana Press; 1998. p. 183–201.

    Google Scholar 

  102. Rinaldi DA, Burris HA, Dorr FA, et al. Initial Phase I evaluation of the novel thymidylate synthase inhibitor, LY231514, using the modfified continual reassessment method for dose escalation. J Clin Oncol. 1995;13:2842–50.

    PubMed  CAS  Google Scholar 

  103. McDonald AC, Vasey PA Adams L et al. A phase I and pharmacokinetic study of LY231514, the multi-targeted antifolate. Clin Cancer Res. 1998;4:605–10.

    PubMed  CAS  Google Scholar 

  104. Takimoto CH. Antifolates in clinical development. Semin Oncol. 1997;24 (9 suppl 18):40–51.

    Google Scholar 

  105. Brandt DS, Chu E. Future challenges in the clinical development of thymidylate synthase inhibitor compounds. Oncol Res. 1997;9:403–10.

    PubMed  CAS  Google Scholar 

  106. Teicher BA, Alvarez E, Liu P, Liu K, Menon K, Dempsey J et al. MTA (LY231514) in combination treatment regimens using human tumor xenografts and the EMT6 murine mammary carcinoma. Semin Oncol. 1999;26 Suppl 6:55–62.

    PubMed  CAS  Google Scholar 

  107. Giovanella BC. Topisomerase I inhibitors. In: Teicher BA, editor, Cancer therapeutics: experimental and clinical agents.Totowa NJ: Humana Press Inc; 1997. p. 137–52.

    Google Scholar 

  108. Chabot GC. Clinical pharmacokinetics of inrotecan. Clin Pharmacokinet. 1997;33:245–59.

    Article  PubMed  CAS  Google Scholar 

  109. Aschele C, Baldo C, Sobrero AF, et al. Schedule-dependent synergism between ZD1694 (ralitrexed) and CPT-11 (irinotecan) in human colon cancer in vitro. Clin Cancer Res. 1998;4:1323–30.

    PubMed  CAS  Google Scholar 

  110. O’Reilly S, Rowinsky EC. The clinical status of irinotecan (CPT-11), a novel water soluble camptothecin analogue. Crit Rev Oncol Hematol. 1996;24:47–70.

    Article  PubMed  Google Scholar 

  111. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Lin WM, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450:893–8.

    Article  PubMed  CAS  Google Scholar 

  112. Wang H, Han H, Mousses S, Von Hoff DD. Targeting loss-of-function mutations in tumor-suppressor genes as a strategy for development of cancer therapeutic agents. Semin Oncol. 2006;33:513–20.

    Article  PubMed  CAS  Google Scholar 

  113. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–13.

    Article  PubMed  CAS  Google Scholar 

  114. Nicolau M, Tibshirani R, Borresen-Dale AL, Jeffrey SS. Disease-specific genomic analysis: identifying the signature of pathologic biology. Bioinformatics. 2007;23:957–65.

    Article  PubMed  CAS  Google Scholar 

  115. Chanock SJ, Burdett L, Yeager M, Llaca V, Langerod A, Presswalla S, Kaaresen R, Strausberg RL, Gerhard DS, Kristensen V, Perou CM, Borresen-Dale AL. Somatic sequence alterations in twenty-one genes selected by expression profile analysis of breast carcinomas. Breast Cancer Res. 2007;9:R5.

    Article  PubMed  CAS  Google Scholar 

  116. Yosef N, Yakhini Z, Tsalenko A, Kristensen V, Borresen-Dale AL, Ruppin E, Sharan R. A supervised approach for identifying discriminating genotypes patterns and its application to breast cancer data. Bioinformatics. 2007;23:e91–8.

    Article  PubMed  CAS  Google Scholar 

  117. Pessina A. Application of the CFU-GM assay to predict acute drug-induced neutropenia: an international blind trial to validate a prediction model for the maximum tolerated dose (MTD) of myelosuppressive xenobiotics. Toxicol Sci. 2003;75:355–367.

    Article  PubMed  CAS  Google Scholar 

  118. Kummar S, Gutierrez M, Doroshow JH, Murgo AJ. Drug development in oncology: classical cytotoxics and molecularly targeted agents. Br J Clin Pharmacol. 2006;62:15–26.

    Article  PubMed  CAS  Google Scholar 

  119. Masubuchi N. A predictive model of human myelotoxicity using five camptothein derivatives and the in vitro colony-forming unit granulocyte/macrophage assay. Clin Cancer Res. 2004;10:6722–31.

    Article  PubMed  CAS  Google Scholar 

  120. Erickson-Miller C. Differential toxicity of camptothecin, topotecan and 9-aminocamptothecin to human, canine, and murine myeloid progenitors (CFU-GM) in vitro. Cancer Chemother Pharmacol. 1997;39:467–72.

    Article  PubMed  CAS  Google Scholar 

  121. Kurtzberg LS, Battle T, Rouleau C, Bagley RG, Agata N, Yao M, Schmid S, Roth S, Crawford J, Krumbholz R, Ewesuedo R, Yo X-J, Wang F, LaVoie E, Teicher BA. Bone marrow and tumor cell CFU and human tumor xenograft efficacy of non-camptothecin and camptothecin topoisomerase I inhibitors. Molec Cancer Therap. 2008;7:3212–22.

    Article  CAS  Google Scholar 

  122. Teicher BA. Preclinical models for combination therapy. In: Teicher BA, Andrews PA, editors. Anticancer drug development guide. Totowa, NJ: Humana Press; 2004. p. 213–42.

    Chapter  Google Scholar 

  123. Rockwell SC. Tumor-cell survival. In: Teicher BA, editor. Tumor models in cancer research. Totowa, NJ: Humana; 2002. p. 617–32.

    Google Scholar 

  124. Teicher BA. In vivo tumor response endpoints. In: Teicher BA, editor. Tumor models in cancer research. Totowa, NJ: Humana; 2002. p. 593–616.

    Google Scholar 

  125. Holden SA, Emi Y, Kakeji Y, Northey D, Teicher BA. Host distribution and response to antitumor alkylating agents of EMT-6 tumor cells from subcutaneous tumor implants. Cancer Chemother Pharmacol. 1997;40:87–93.

    Article  PubMed  CAS  Google Scholar 

  126. Teicher BA, Herman TS, Holden SA, Wang Y, Pfeffer MR, Crawford JM, Frei E, III. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science. 1990;247:1457–61.

    Article  PubMed  CAS  Google Scholar 

  127. Teicher BA, Chatterjee D, Liu-J-T, Holden SA, Ara G. Protection of bone marrow CFU-GM in mice-bearing in vivo alkylating resistant murine EMT-6 tumors. Cancer Chemother Pharmacol. 1993;35:315–19.

    Article  Google Scholar 

  128. Chatterjee D, Liu CT, Northey D, Teicher BA. Molecular characterization of the in vivo alkylating agent resistant murine EMT-6 mammary carcinoma tumors. Cancer Chemother Pharmacol. 1995;35:423–31.

    Article  PubMed  CAS  Google Scholar 

  129. Veroski V, De Ridder M, Van Den Berge D, Monsaert C, Wauters N, Storme G. Inhibition of NF-kappaB may impair tumor cell radioresponse: a possible complication for proteasome-targeting strategies. Proc Am Assoc Cancer Res. 2002;43:abstr 3217.

    Google Scholar 

  130. Perry WL, Jin S, Menon KE, Dantzig AH, Teicher BA. Microarray analysis of EMT-6 murine mammary tumors and sublines selected from drug resistance in vivo. Proc Am Assoc Cancer Res. 2002;43:abstr 5461.

    Google Scholar 

  131. Brandes LM, Hadjisavva IS, Peterson K, Patierno SR, Stephan DA, Kennedy KA. Expression analysis reveals a role for TGF-β and the PDGFR/MAPK signaling pathway in the development of both chemical- and physiologic-induced drug resistance of breast cancer cells. Proc Am Assoc cancer Res. 2002;43:abstr 5371.

    Google Scholar 

  132. Teicher BA, Holden SA, Ara G, Alvarez E, Huang ZD, Chen Y-N, Brem H. potentiation of cytotoxic cancer therapies by TNP-470 alone and with other antiangiogenic agents. Int J cancer. 1994;57:920–5.

    Article  PubMed  CAS  Google Scholar 

  133. Teicher BA, Dupius NP, Robinson M, Emi Y, Goff D. Antiangiogenic treatment (TNP-470/minocycline) increases tissue levels of anticancer drugs in mice bearing Lewis lung carcinoma. Oncol Res. 1995;7:237–43.

    PubMed  CAS  Google Scholar 

  134. Teicher BA, Holden SA, Ara G, Northey D. Response of the FSaII fibrosarcoma to antiangiogenic modulators plus cytotoxic agents. Anticancer Res. 1993;13:2101–6.

    PubMed  CAS  Google Scholar 

  135. Teicher BA, Alvarez E, Huang ZD. Antiangiogenic agents potentiate cytotoxic therapies against primary and metastatic disease. Cancer Res. 1992;52:515–22.

    Google Scholar 

  136. Teicher BA, Dupuis N, Kusumoto T, Robinson MF, Liu F, Menon K, Coleman CN. Antiangiogenic agents can increase tumor oxygenation and response to radiation therapy. Radiat Oncol Invest. 1995;2:269–76.

    Article  Google Scholar 

  137. Teicher BA, Holden SA, Ara G, Dupuis NP, Kakeji Y, Ikebe M, Emi Y, Goff D. Potentiation of cytotoxic therapies by TNP-470 and minocycline in mice bearing EMT-6 mammary carcinoma. Breast Cancer Res Treat. 1995;36:227–36.

    Article  PubMed  CAS  Google Scholar 

  138. Teicher BA, Holden SA, Dupuis NP, Liu F, Yuan J, Ikebe M, Kakeji Y. Influence of an antiangiogenic treatment on 9L gliosarcoma: oxygenation and response to cytotoxic therapy. Int J Cancer. 1995;61:732–7.

    Article  PubMed  CAS  Google Scholar 

  139. Herbst RS, Takeuchi H, Teicher BA. Paclitaxel/carboplatin administration along with antiangiogenic therapy in non-small cell lung and breast carcinoma models. Cancer Chemother Pharmacol. 1998;41:497–504.

    Article  PubMed  CAS  Google Scholar 

  140. Teicher BA, Alvarez E, Menon K, Esterman MA, Considine E, Shih C, Faul MM. Antiangiogenic effects of a protein kinase C beta-selective small molecule. Cancer Chemo Pharmacol. 49:69–77, 2002.

    Article  CAS  Google Scholar 

  141. Liu Y, Su W, Thompson EA, Leitges M, Murray NR, Fields AP. Protein kinase C beta II regulates its own expression in rat intestinal epithelial cells and the colonic epithelium in vivo. J Biol Chem. 279:45556–45563, 2004.

    Article  PubMed  CAS  Google Scholar 

  142. Rizvi MA, Ghias K, Davies KM, Ma C, Krett NL, Rosen ST. Enzastaurin (LY317615), an oral protein kinase C b inhibitor, induces apoptosis in multiple myeloma cell lines. Proc Am Soc Hematol. 2005: Abstr 1577.

    Google Scholar 

  143. Podar K, Raab MS, Zhang J, McMillin D, Breitkreutz I, Tai Y-T, Lin BK, Munshi NC, Hideshima T, Chauhan D, Anderson KC. Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small molecule inhibitor enzastaurin (LY317615.HCl) Blood. 2007;109:1669–77.

    Article  PubMed  CAS  Google Scholar 

  144. Rossi RM, Henn AD, Conkling R, Guzmann ML, Bushnell T, Harvey J, Fisher RI, Jordan CT. The PKCb selective inhibitor, enzastaurin (LY317615), inhibits growth of human lymphoma cells. Proc Am Soc Hematol. 2005: Abstr 1483.

    Google Scholar 

  145. Rieken M, Weigert O, Pastore A, Hutter G, Zimmermann Y, Weinkauf M, Hiddemann W, Dreyling M. Inhibition of protein kinase C beta by enzastaurin (LY317615) induces alterations of key regulators of cell cycle and apoptosis in mantle cell lymphoma and synergizes with chemotherapeutic agents in a sequence dependent manner. Proc Am Soc Hematol. 2005:Abstr 2416.

    Google Scholar 

  146. Teicher BA, Menon K, Alvarez E, Liu P, Shih C, Faul MM. Antiangiogenic and antitumor effects of a protein kinase C beta inhibitor in human hepatocellular and gastric cancer xenografts. In Vivo. 2001;15:185–93.

    PubMed  CAS  Google Scholar 

  147. Teicher BA, Menon K, Alvarez E, Galbreath E, Shih C, Faul MM. Antiangiogenic and antitumor effects of a protein kinase C Beta inhibitor in human T98G glioblastoma multiforme xenografts. Clin Cancer Res. 2001;7:634–640.

    PubMed  CAS  Google Scholar 

  148. Keyes K, Cox K, Treadway P, Mann L, Shih C, Faul MM, Teicher BA. An In vitro tumor model: analysis of angiogenic factor expression after chemotherapy. Cancer Res. 2002;62:5597–602.

    PubMed  CAS  Google Scholar 

  149. Keyes K, Mann L, Cox K, Treadway P, Iversen P, Chen Y-F, Teicher BA. Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex multiplex technology. Cancer Chemo Pharmacol. 2003;51:321–7.

    CAS  Google Scholar 

  150. Keyes KA, Mann L, Sherman M, Galbreath E, Schirtzinger L, Ballard D, ChenYF, Iversen P, Teicher BA. LY317615 decreases plasma VEGF levels in human tumor xenograft-bearing mice. Cancer Chemother Pharmacol. 2004;53:133–40.

    Article  PubMed  CAS  Google Scholar 

  151. Teicher BA. Protein kinase C as a therapeutic target. Clin Cancer Res. 2006;12:5336–45.

    Article  PubMed  CAS  Google Scholar 

  152. Teicher BA. Tumor models for efficacy determination. Molec Cancer Therap. 2006;5:2435–43.

    Article  CAS  Google Scholar 

  153. Teicher BA. In vivo/ex vivo and in situ assays used in cancer research: a brief review. Toxicol Pathol. 2009;37:114–22.

    Article  PubMed  CAS  Google Scholar 

  154. Teicher BA. Acute and chronic in vivo therapeutic resistance. Biochem Pharm. 2009;77:1665–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly A. Teicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Teicher, B.A. (2011). Preclinical Tumor Response End Points. In: Teicher, B. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-968-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-968-0_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-967-3

  • Online ISBN: 978-1-60761-968-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics