Skip to main content

Retinal Disturbances in Patients and Animal Models with Huntington’s, Parkinson’s and Alzheimer’s Disease

  • Chapter
  • First Online:
Studies on Experimental Models

Abstract

Huntington’s disease (HD), Parkinson’s disease (PD) and Alzheimer’s disease (AD) are neurodegenerative disorders associated with aging. The main hallmarks of these pathologies are deposits of mutant proteins, mitochondrial dysfunctions, reactive oxygen species (ROS) and neuronal death. These diseases affect from heterogeneous form to different brain regions. In fact, psychophysical, electrophysiological and morphological evidence shows that retinal and higher visual centers disturbances occur in HD, PD and AD. Thus, patients with these disorders suffer contrast sensitivity deficits, altered color vision and damaged conscious and unconscious visual perception. These visual deficiencies may contribute to symptoms of these pathologies related to behavior, memory and difficulty in performing daily tasks such as driving, reading or keeping their balance. This chapter tries to integrate the visual changes in pathogenesis and symptomatology of patients with HD, PD and AD and reviews the recent findings in animal models of these diseases to provide an insight into how retinal changes might contribute to symptoms of HD, PD and AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

6-Hydroxydopamine

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

APPswe:

Amyloid precursor protein with the double Swedish mutation

Aβ:

Amyloid β peptides

CS:

Contrast sensitivity

ERG:

Electroretinogram

HD:

Huntington’s disease

htt:

Huntingtin

l-dopa:

l-3,4-Dihydroxyphenylalanine

MPP+:

1-Methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine

NRSE:

Neuron-restrictive silencer elements

NRSF:

Neuron-restrictive silencer factor

PD:

Parkinson’s disease, PERG, pattern electroretinogram

PINK1:

Phosphatase-tensin homologue induced putative kinase 1

PS1:

Presenilin 1

REST:

Repressor-element 1 silencing transcription factor

ROS:

Reactive oxygen species

VEP:

Visual evoked potentials

References

  1. Kolb H (2003) How the retina works. American Scientist. 91:28–35.

    Google Scholar 

  2. Masland RH (2001) Neuronal diversity in the retina. Curr. Opin. Neurobiol. 11:431–436.

    Google Scholar 

  3. Zhao S, Rizzolo LJ, Barnstable CJ (1997) Differentiation and transdifferentiation of the retinal pigment epithelium. Int Rev Cytol 171:225–66.

    Google Scholar 

  4. Strauss O (2005) The retinal pigment epithelium in visual function. Pysiol Rev 85:845–881.

    Google Scholar 

  5. Schnitzer J (1988) Immunocytochemical studies on the development of astrocytes, Müller (glia) cells, and oligodendrocytes in the rabbit retina. Dev Brain Res 44:59–72.

    Google Scholar 

  6. Berliner ML (1931) Cytologic studies on the retina: I. Normal coexistence of oligodendroglia and myelinated nerve fibers. Arch. Ophthalmol. 6:740–751.

    Google Scholar 

  7. Ehinger B, Zucker CL, Brunn A, Adolph A (1994) In vivo staining of oligodendroglia in the rabbit retina. Glia 10:40–48.

    Google Scholar 

  8. Bristow EA, Griffiths PG, Andrews RM, Johnson MA, Turnbull DM (2002) The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophthalmol 120:791–796.

    Google Scholar 

  9. Morcos Y, Chan-Ling T (2000) Concentration of astrocytic filaments at the retinal optic nerve junction is coincident with the absence of intra-retinal myelination: compartive and developmental evidence. J Neurocytol 29:665–678.

    Google Scholar 

  10. Holland PM, Anderson B (1976) Myelinated nerve fibers and severe myopia. Am J Ophthalmol 81:597–599.

    Google Scholar 

  11. Straatsma BR, Heckenlively JR, Foss R, Shahinian JK (1979) Myelinated retinal nerve fibers associated with ipsilateral myopia, amblyopia and strabismus. Am J Ophthalmol 88:506–510.

    Google Scholar 

  12. Hunter SF, Leavitt JA, Rodriguez M (1997) Direct observation of myelination in vivo in the mature human central nervous system. A model for the behaviour of oligodendrocyte progenitors and their progeny. Brain 120:2071–2082.

    Google Scholar 

  13. Stefansson K, Molnar ML, Marton LS, Molnar GK, Mihivilovic M, Tripathi RC, Richman DP (1984) Myelin-associated glycoprotein in the human retina. Nature 307:548–550.

    Google Scholar 

  14. Prada FA, Quesada A, Aguilera, Santano C, Prada C (2001) The Müller cells express myelin oligodendrocyte specific protein (MOSP). Ophthalmic Res. 33:237–250.

    Google Scholar 

  15. Kodama T, Hayasaka S, Setogawa T (1990) Myelinated retinal nerve fibers: prevalence, location and effect on visual acuity. Ophthalmologica 200:77–83.

    Google Scholar 

  16. Fitzgibbon T, Nestorovski (1997) Morphological consequences of myelination in the human retina. Exp Eye Res 65:809–819.

    Google Scholar 

  17. Marc, RE (2004) Retinal neurotransmitters. In: Chalupa LM and Werner JS (ed). The visual neurosciences. Baskerville, Hong-Kong, printed EEUU.

    Google Scholar 

  18. Lutty GA, McLeod DS (2003) Retinal vascular development and oxygen-induced retinopathy: a role for adenosine. Prog Retin Eye Res 22:95–111.

    Google Scholar 

  19. Franke H, Klimke K, Brinckmann V, Grosche J, Francke M, Sperlagh B, Reichenbach A, Liebert UG, Illes P (2005) P2X7 receptor-mRNA and -protein in the mouse retina; changes during retinal degeneration in BALBCrds mice. Neurochem Int 47:235–242.

    Google Scholar 

  20. Sarman S, Mancini J, van der Ploeg I, Croxatto JO, Kyanta A, Gallo JE (2008) Involvement of purinergic P2 receptors in experimental retinal neovascularization. Curr Eye Res 33:285–291.

    Google Scholar 

  21. Mitchell CH, Lu W, Hu H, Zhang X, Reigada D, Zhang M (2009) The P2X7 receptor in retinal ganglion cells: A neuronal model of pressure- induced damage and protection by a shifting purinergic balance. Purinergic Signal. 5:241–249.

    Google Scholar 

  22. Pintor J, Sánchez-Nogueiro J, Irazu M, Mediero A, Peláez T, Peral A (2004) Immunolocalisation of P2Y receptors in the rat eye. Purinergic signal. 1:83–90.

    Google Scholar 

  23. Puthussery T, Fletcher E (2009) Extracellular ATP induces retinal photoreceptor apoptosis through activation of purinoreceptors in rodents. 513:430–440.

    Google Scholar 

  24. Lindsay T. Sharpe, Stockman A (1999) Rod pathways: the importance of seeing nothing. Trends Neurosci. 22:497–504.

    Google Scholar 

  25. Chalupa LM, Grünhan E (2004) Development of ON and OFF retinal pathways and retinogeniculate projections. Prog Ret Eye Res 23:31–51.

    Google Scholar 

  26. Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2009) The retina in Parkinson disease. Brain. 132:1128–45.

    Google Scholar 

  27. Schiller PH, Malpeli JG (1978) Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J Neurophysiol. 41:788–797.

    Google Scholar 

  28. Perry VH, Oehler R, Cowey A (1984) Retinal ganglion cells that project to the lateral geniculate nucleus in the macaque monkey. Neurosci. 12:1101–1123.

    Google Scholar 

  29. Martin PR, White AJ, Goodchild AK, Wilder HD. Sefton AE (1997) Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur J Neurosci. 9:1536–1541.

    Google Scholar 

  30. Orban GA (2008) Higher order visual processing in macaque extrastriate cortex. Physiol Rev 88:59–89.

    Google Scholar 

  31. Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat A-L, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191.

    Google Scholar 

  32. Thomas B, Beal MF (2007) Parkinson’s disease. Hum. Mol. Genet. 16 Rev: R183–R194.

    Google Scholar 

  33. Lautier C, Goldwurm S, Dürr A, Giavonnone B, Tsiaras WG, Pezzoli G, Brice A, Smith RJ (2008) Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease. Am. J Hum Genet 82:822–833.

    Google Scholar 

  34. Takazawa C, Fujimoto K, Homma D, Sumi-Ichinose C, Numura T, Ichinose H, Katch S (2008) A brain-specific decrease of the tyrosine hydroxylase protein in sepiapterin reductase-null mice as a mouse model for Parkinson’s disease. Biochem Biophys Res Commun 367:787–792.

    Google Scholar 

  35. Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basis for the treatment of Parkinson disease. Neurology 72 Supp: S1–S136.

    Google Scholar 

  36. Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G (2000) The parkinsonian toxin MPTP: action and mechanism. Rest Neurol Neurosc 16:135–142.

    Google Scholar 

  37. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909.

    Google Scholar 

  38. Cohen G (1984) Oxy-radical toxicity in catecholamine neurons. Neurotoxicology 5:77–82.

    Google Scholar 

  39. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci. 3:932–942.

    Google Scholar 

  40. George-Hyslop PH (2000) Molecular genetics of Alzheimer’s disease. Biol Psychiatry 47:183–199.

    Google Scholar 

  41. Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin. Invest 15:1449–1457.

    Google Scholar 

  42. Ross CA, Smith WW (2007) Gene-environment interactions in Parkinson’s disease. Parkinsonism Relat Disord 13:s309–s315.

    Google Scholar 

  43. Wider C, Wszolek ZK (2007) Clinical genetics of Parkinson’s disease and related disorders. Parkinsonism Relat Disord 13:s229–s232.

    Google Scholar 

  44. Cookson MR (2009) α-Synuclein and neuronal cell death. Mol Neurodegener Doi: 10.1186/1750-1326-4-9.

  45. Lesage S, Brice A (2009) Parkinson’s disease: from monogenic to genetic susceptibility factors. Hum Mol Genet 18:R48–R59.

    Google Scholar 

  46. Van Raamsdonk JM, Metzler M, Slow E, Pearson J, Schwab C, Carroll J, Graham RK, Leavitt BR, Hayden MR (2007) Phenotypic abnormalities in the YAC128 mouse model of Huntington disease are penetrant on multiple genetic backgrounds and modulate by strain. Neurobiol Dis 26:189–200.

    Google Scholar 

  47. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disorders. Nat Genet 10 Supp:S10–S17.

    Google Scholar 

  48. Kamat CD, Gadal S, Mhatre M, Williamson KS, Pye QN, Hensley K (2008) Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J Alzheimers Dis 15:473–493.

    Google Scholar 

  49. Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188.

    Google Scholar 

  50. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397.

    Google Scholar 

  51. Bonsi P, Cuomo D, Martella G, Sciamanna G, Tolu M, Calabresi P, Bernardi G, Pisani A (2006) Mitochondrial toxins in basal ganglia disorders: from animal to therapeutic strategies. Curr Neuropharmacol 4:69–75.

    Google Scholar 

  52. Petrozzi L, Ricci G, Giglioli NJ, Siciliano G, Mancuso M (2007) Mitochondria and neurodegeneration. Biosci Rep 27:87–104.

    Google Scholar 

  53. Fukui H, Moraes CT (2008) The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci 31:251–256.

    Google Scholar 

  54. Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, Rizzuto R (2009) Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. Biochim Biophys Acta 1787:335–344.

    Google Scholar 

  55. Chan CS, Gertler TS, Surmeier J (2009) Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci 32:249–256.

    Google Scholar 

  56. Lee J-A (2009) Autophagy in neurodegeneration: two sides of the same coin. BMB Rep 42:324–330.

    Google Scholar 

  57. Zhang L, Sheng R, Qin Z (2009) The lysosome and neurodegenerative diseases. Acta Biochim Biophys Sin 41:437–445.

    Google Scholar 

  58. Malkus KA, Tsika E, Ischiropoulos H (2009) Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson’s disease: how neurons are lost in the Bermuda triangle. Mol Neurodegeneration Doi: 10.1186/1750-1326-4-24.

  59. Lehman NL (2009) The ubiquitin proteasome system in neuropathology. Acta Neuropathol 118:329–347.

    Google Scholar 

  60. Brandies R, Yehuda S (2008) The possible role of retinal dopaminergic system in visual performance. Neurosci Biobehav Rev 32:611–656.

    Google Scholar 

  61. Paulus W, Schwarz G, Werner A, Lange H, Bayer A, Hofschuster M, Muller N, Zrener E (1993) Impairment of retinal increment thresholds in Huntington’s disease. Ann Neurol 34:574–578.

    Google Scholar 

  62. Petrasch-Parwez L, Sathasivam K, Seller M, Cozeus B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (2005) Is the retina affected in Huntington´s disease? Acta Neuropathol 110:523–525.

    Google Scholar 

  63. Harnois C, Di Paolo T (1990) Decreased dopamine in the retinas of patients with Parkinson’s disease. Invest. Ophthalmol Vis Sci 31:2473–2475.

    Google Scholar 

  64. Nguyen-Legros J, Harnois C, Di Paolo T, Simon A (1993) The retinal dopamine system in Parkinson’s disease. Clin Vis Sci 8:1–12.

    Google Scholar 

  65. Masson G, Mestre D, Blin O (1993) Dopaminergic modulation of visual sensitivity in man. Fundam Clin Pharmacol 7:449–463.

    Google Scholar 

  66. Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A (2004) Retinal nerve fiber layer thinning in Parkinson’s disease. Vis Res 44:2793–2797.

    Google Scholar 

  67. Altintas Ö, Iseri P, Özkan B, Calglar Y (2008) Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 116:137–146.

    Google Scholar 

  68. Hajee ME, March WF, Lazaro DR, Wolintz AH, Shrier EM, Glazman S, Bodis-Wollner I (2009) Inner fiber layer thinning in Parkinson disease. Arch Ophthalmol 127:737–741.

    Google Scholar 

  69. Nightingale S, Mitchell KW, Howe JW (1986) Visual evoked cortical potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J Neurol Neurosurg Phychiatry 49:1280–1287.

    Google Scholar 

  70. Gottlob I, Schneider E, Heider W, Skandies W (1987) Alteration of visual evoked potentials and electroretinograms in Parkinson’s disease. Electroenceph Clin Neurophysiol 66:349–357.

    Google Scholar 

  71. Ghilardi MF, Marx Ms, Bodis-Wollner I, Camras CB, Glover AA (1989) The effect of intraocular 6-hydroxydopamine on retinal processing of primates. Ann Neurol 25:357–364.

    Google Scholar 

  72. Stanzione P, Pirelli F, Peppe A, Stefano E, Rizzo PA, Morocutti C, Bernardi G (1989) Pattern visual evoked potentials and electroretinogram abnormalities in Parkinson’s disease. Clin Vis Sci 4:115–127.

    Google Scholar 

  73. Bodis-Wollner I (1990) Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease. Trends Neurosci 13:296–301.

    Google Scholar 

  74. Ikeda H, Head GM, Ellis JK (1994) Electrophysiological signs of retinal dopamine deficiency in recently diagnosed Parkinson’s disease. Vis Res 34:2629–2638.

    Google Scholar 

  75. Langheinrich T, Tebartz Van Elst L, Lagrèze WA, Bach M, Lücking CH, Greenlee MW (2000) Visual contrast response functions in Parkinson’s disease: evidence from electroretinograms, visually evoked potentials and phychophysics. Clin Neurophysiol 111:66–74.

    Google Scholar 

  76. Ellis CJK, Allen TGL, Marden CD, Ikeda H (1987) Electroretinographic abnormalities in idiopathic Parkinson’s disease and the effect of levodopa administration. Clin Vis Sci 1:347–355.

    Google Scholar 

  77. Jaffe MJ, Bruno G, Campbell G, Lavine RA, Karson CN, Weinberger DR (1987) Ganzfeld electroretinographic findings in Parkinsonism: untreated patients and the effect of levodopa intravenous infusion. J Neurol Neurosurg Phychiatry 50:847–852.

    Google Scholar 

  78. Djamgoz MBA, Hankins MW, Hirano J, Archer SN (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vis Res 37:3509–3529.

    Google Scholar 

  79. Calzetti S, Franchi A, Taratufolo G, Groppi E (1990) Simultaneous VEP and PERG investigations in early Parkinson’s disease. J Neurol Neurosurg Phychiatry 53:114–117.

    Google Scholar 

  80. Sartucci F, Orlandi G, Bonuccelli U, Borghetti D, Murri L, Orsini C, Domenici L, Porciatti V (2006) Chromatic pattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophy compared with Parkinson’s disease. Neurol Sci 26:395–401.

    Google Scholar 

  81. Peppe A, Stanzione P, Pieratonzzi M, Semprini R, Bassi A, Santilli AM, Formisano R, Piccolono M, Bernardi G (1998) Does pattern electroretinogram spatial tuning alteration in Parkinson’s disease depend on motor disturbances or retinal dopaminergic loss? Electroencephalogr Clin Neurophysiol 106:374–382.

    Google Scholar 

  82. Bodis-Wollner I, Yahr MD (1978) Measurements of visual evoked potentials in Parkinson’s disease. Brain 101:661–671.

    Google Scholar 

  83. Marx M, Bodis-Wollner I, Bodak P, Harnois C, Mylin L, Yahr M (1986) Temporal frequency-dependent VEP changes in Parkinson’s disease. Vis Res 26:185–193.

    Google Scholar 

  84. Peppard RF, Martin WR, Clark CM, Carr GD, McGeer PL, Calne DB (1990) Cortical glucose metabolism in Parkinson’s disease and Alzheimer’s disease. Neurosci Res 4:561–568.

    Google Scholar 

  85. Bohnen N, Minoshima S, Giordani B, Frey K, Kuhl D (1999) Motor correlates of occipital hypometabolism in PD without dementia. Neurology 52:541–546.

    Google Scholar 

  86. Bodis-Wollner I (2003) Neurophysichological and perceptual defects in Parkinson’s disease. Parkinsonism Relat Disord 9:583–589.

    Google Scholar 

  87. Bodis-Wollner I, Marx MS, Mitra S, Bobak P, Mylin L, Jahr M (1987) Visual dysfunction in Parkinson’s disease. Loss in spatiotemporal contrast sensitivity. Brain 110:1675–1698.

    Google Scholar 

  88. Mestre D, Blin O, Serratrice G, Pailhous J (1990) Spatiotemporal contrast sensitivity differs in normal aging and Parkinson’s disease. Neurology 40:1710–1714.

    Google Scholar 

  89. Harris JP, Calvert JE, Phillipson OT (1992) Processing of spatial contrast in peripheral vision in Parkinson’s disease. Brain 115:1447–1457.

    Google Scholar 

  90. Tebartz Van Elst L, Greenlee MW, Foley JM, Lücking CH (1997) Contrast detection, discrimination and adaptation in patients with Parkinson’s disease and multiple system atrophy. Brain 120:2219–2228.

    Google Scholar 

  91. Delalande I, Hache JC, Forzy G, Bughin M, Benhadjali J, Destee A (1998) Do visual-evoked potentials and spatiotemporal contrast sensitivity help to distinguish idiopathic Parkinson’s disease and multiple system atrophy? Mov Disord 13:446–452.

    Google Scholar 

  92. Silva MF, Faria P, Regateiro FS, Forjaz V, Januário C, Freire A, Castelo-Branco M (2005) Independent patterns of damage with magno-, parvo- and koniocellular pathways in Parkinson’s disease. Brain 128:2260–2271.

    Google Scholar 

  93. Bulens C, Meerwaldt JD, Van der Wildt GJ (1988) Effect of stimulus orientation on contrast sensitivity in Parkinson’s disease. Neurology 38:76–81.

    Google Scholar 

  94. Bodis-Wollner I, Von Gizycki H, Avitable M, Hussain Z, Javeid A, Habib A, Raza A, Sabet M (2002) Perisaccadic occipital EEG changes quantified with wavelet analysis. Ann NY Acad Sci 956:464–467.

    Google Scholar 

  95. Vannini P, Lehmann C, Dierks T, Jann K, Viitanen M, Wahlund L-O, Almkvist O (2008) Failure to modulate neural response to increased task demand in mild Alzheimer’s disease: fMRI study of visuospatial processing. Neurobiol Dis 31:287–297.

    Google Scholar 

  96. Mendez MF, Mendez MA, Martin R, Smyth KA, Whitehouse PJ (1990) Complex visual disturbances in Alzheimer´s disease. Neurology 40:439–443.

    Google Scholar 

  97. Levine DN, Lee JM, Fischer CM (1993) The visual variant of Alzheimer’s disease: a clinico-pathologic case study. Neurology 43:305–313.

    Google Scholar 

  98. Blanks JC, Torigoe Y, Hinton DR, Blanks RHI (1996a) Retinal pathology in Alzheimer’s disease. I.Ganglion Cell loss in foveal/parafoveal retina. Neurobiol Aging 17:377–384.

    Google Scholar 

  99. Blanks JC, Schmidt SY, Torigoe Y, Porrello KV, Hinton DR, Blanks RHI (1996b) Retinal pathology in Alzheimer’s disease II. Regional neuron loss and glial changes in GCL. Neurobiol Aging 17:385–395.

    Google Scholar 

  100. Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F (2001) Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol 112:1860–1867.

    Google Scholar 

  101. Iseri PK, Altinas O, Tokay T, Yüksel N (2006) Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer’s disease. J Neuroophthal 26:16–24.

    Google Scholar 

  102. Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J (2007) Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 420:97–99.

    Google Scholar 

  103. Katz B, Rimmer S, Iragui V, Katzman R (1989) Abnormal pattern electroretinogram in Alzheimer’s disease: evidence for retinal ganglion cell degeneration? Ann Neurol 26:221–225.

    Google Scholar 

  104. Trick GL, Barris MC, Bickler M (1989) Abnormal pattern electroretinograms in patients with senile dementia of the Alzheimer type. Ann Neurol 26:226–231.

    Google Scholar 

  105. Tsai CS, Ritch R, Schwartz B, Lee SS, Miller NR, Chi T, Hsieh FY (1991) Optic nerve head and nerve fiber layer in Alzheimer’s disease. Arch Ophthalmol 109:199– 204.

    Google Scholar 

  106. Vinters HV, Wang ZZ, Secor DL (1996) Brain parenchymal and microvascular amyloid in Alzheimer’s disease. Brain Pathol 6:179–195.

    Google Scholar 

  107. Jellinger KA (2002) Alzheimer’s disease and cerebrovascular pathology: an update. J Neural Transm 109:813–836.

    Google Scholar 

  108. Suo Z, Humphrey J, Kundtz A, Sethi F, Placzek A, Crawford F, Mullan M (1998) Soluble Alzheimers beta- amyloid constricts the cerebral vasculature in vivo. Neurosci Lett 257:77–80.

    Google Scholar 

  109. Cardinali DP, Pevet P (1998) Basic aspects of melatonin action. Sleep Med Rep 2:175–190.

    Google Scholar 

  110. Skene DJ, Vivien- Roels B, Sparks DL, Hunsaker JC, Pévet P, David D, Swaab DF. (1990) Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease. Brain Res 528:170–174.

    Google Scholar 

  111. Uchida K, Okamoto N, Ohara K, Morita Y (1996) Daily rhythm of serum melatonin in patients with dementia of the degenerate type. Brain Res 717:154–159.

    Google Scholar 

  112. Wu Y-H, Swaab DF (2004) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38:145–152.

    Google Scholar 

  113. Ohashi Y, Okamoto M, Uchida K, Iyo M, Mori N, Morita Y (1999) Daily rthythm of serum melatonin levels and effect of light exposure in patients with dementia of the Alzheimer’s type. Bio Psychiatry 45:1646–1652.

    Google Scholar 

  114. Sevaskan E, Jockers R, Ayons M, Angeloni D, Fraschini F, Flammer J, Eckert A, Müller-Spahn F, Meyer P (2007) The MT2 melatonin receptor subtype is present in human retina and decrease in Alzheimer’s disease. Curr Alzheimer Res 4:47–51.

    Google Scholar 

  115. Pache M, Smeets CHW, Gasio PF, Sevaskan E, Flammer J, Wirz-Justice A, Kaiser H (2003) Color vision deficiencies in Alzheimer’s disease. Age Ageing 32:422–426.

    Google Scholar 

  116. Reiter RJ, Carneiro RC, Oh CS (1997) Melatonin in relation to cellular antioxidative defense mechanism. Horm Metab Res 29:363–372.

    Google Scholar 

  117. Reiter RJ (1998) Oxydative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56:359–384.

    Google Scholar 

  118. Hardeland R (2005) Antioxidative protection by melatonin: multiplicity of mechanism from radical detoxification to radical avoidance. Endocrine 27:119–130.

    Google Scholar 

  119. Pandi-Perumal SR, Srinivasan V, Maestroni GJN, Cardinali DP, Poeggeler R, Hardeland R (2006) Melatonin nature’s most versatile biological signal? FEBS J 273:2813–2838.

    Google Scholar 

  120. Leuba G, Saini (1995) Pathology of subcortical visual centers in relation to cortical degeneration in Alzheimer’s disease. Neuropathol Appl Neurobiol 21:410–422.

    Google Scholar 

  121. Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 7:1799–1808.

    Google Scholar 

  122. Dentchev T, Milam AH, Lee VM-Y, Trojanowski JQ, Dunaief JL (2003) Amyloid-β is found in drusen from age-related macular degeneration retinas, but not in drusen from normal retinas. Mol Vis 9:184–190.

    Google Scholar 

  123. Ding J, Lin J, Mace BE, Herrmann R, Sullivan P, Rickman CB (2008) Targeting age-related macular degeneration with Alzheimer’s disease based immunotherapies: Anti-Amyloid-β antibody alternatives pathologies in an age-related macular degeneration. Vis Res 48:339–345.

    Google Scholar 

  124. Bayer AU, Ferrari F, Erb C (2002) High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol 47:165–168.

    Google Scholar 

  125. Nelson GA, Edward DP, Wilensky JK (1999) Ocular amyloidosis and secondary glaucoma. Ophthalmol 106:1363–1366.

    Google Scholar 

  126. Goldblum D, Kipfer-Kauer A, Sarra G-M, Wolf S, Frueh BE (2007) Distribution of amyloid precursor protein and amyloid-β immunoreactivity in DBA/2J glaucomatous mouse retinas. Invest Ophthalmol Vis Sci 48:5085–5090.

    Google Scholar 

  127. Guo L, Salt TE, Luong V, Wood N, Cheung W,Maass A, Ferrari G, Russo-Marie F, Silito AM, Cheetham ME, Moss SE, Fitzke FW, Cordeiro MF (2007) Targeting amyloid-β in glaucoma treatment. Proc Natl Acad Sci USA 104:13444–13449.

    Google Scholar 

  128. Wostyn P, Audenaert K, De Deyn PP (2008). An abnormal high trans-lamina cribosa pressure difference: a missing link between Alzheimer’s disease and glaucoma? Clin Neurol Neurosurg 110:753–754.

    Google Scholar 

  129. Helmlinger D, Yvert G, Picaud S, Merienne K, Sahel J, Mandel J, Devys D (2002) Progressive retinal degeneration and dysfunction in R6 Huntington’s disease mice. Hum Mol Genet 11(26):3351–3359.

    Google Scholar 

  130. Yin H, Chen L, Chen X, Liu X (2008) Soluble amyloid b oligomers may contribute to apoptosis of retinal ganglion cells in glaucoma. Med Hypotheses 71:77–80.

    Google Scholar 

  131. Abou–Sleymane G, Chamel F, Helmlinger D, Landernois A, Thibault C, Weber C, Merienne K, Mandel I, Pour D, Devyes D, Trottier (2006) Polyglutamine expansion cases neurodegeneration by altering the neuronal differentiation program. Hum Mol Genet 15(5):691–703.

    Google Scholar 

  132. Helmlinger D, Abou –Sleymane G, Yvert G, Rousseau S, Weber C, Trottier Y, Mandel JL, Devyes D (2004) Disease progression despite early loss of polyglutamine protein expression in SCA7 mouse model. J Neurosci 24:1881–1887.

    Google Scholar 

  133. Luthi-Carter R, Hanson SA, Strand AD, Bergstrom DA, Chun W, Peters NL, Woods AM, Chan E, Kooperberg C, Krainc D, Young AB, Tapscott SJ, Olson JM (2002) Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Hum Mol Genet 11:1911–1926.

    Google Scholar 

  134. Landles C, Bates (2004) Huntingtin and the molecular pathogenesis of Huntington’s disease. EMBO Rep 5:958–963.

    Google Scholar 

  135. Young RW (1985) Cell proliferation during postnatal development of the retina in the mouse. Brain Res 353:229–239.

    Google Scholar 

  136. Martins R, Pearson RA. (2008) Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 1192:37–60.

    Google Scholar 

  137. Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bonzou B, Jensen RV, Krainc D (2005) Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proc Natl Acad Sci USA 102(31):11023–11028.

    Google Scholar 

  138. Bové J, Prou C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx. 2:484–494.

    Google Scholar 

  139. Harvey BK, Wang Y, Hoffer BJ (2008) Transgenic rodent models of Parkinson’s disease. Acta Neurochir Suppl 101:89–92.

    Google Scholar 

  140. Meredith GE, Sonsalla P, Chesselet M-F (2008) Animal models of Parkinson’s disease progression. Acta Neuropathol. 115:385–398.

    Google Scholar 

  141. Blum D, Torch S, Lambeng N, Nissou M-F, Benabid A-L, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172.

    Google Scholar 

  142. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA adn MPTP. Cell Tissue Res 318:215–224.

    Google Scholar 

  143. Bodis-Wollner I, Tagliati M (1993) The visual system in Parkinson’s disease. Advances Neurol 60:390–394.

    Google Scholar 

  144. Bodis-Wollner I, Tzelepi A (1998) The push-pull action of dopamine on spatial tuning of the monkey retina: the effects of dopamine deficiency and selective D1 and D2 receptor ligands on the pattern electroretinogram. Vis Res 38:1479–1487.

    Google Scholar 

  145. Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Pezinger G, Miller R, Akram M (2001) The parkinsonian toxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76:1265–1274.

    Google Scholar 

  146. Nagel F, Bähr M, Dietz GP (2009) Tyrosine hydroxylase-positive amacrine interneurons in the mouse retina are resistant against the application of various parkinsonian toxins. Brain Res Bull 79:303–309.

    Google Scholar 

  147. Ghilardi MF, Bodis-Wollner I, Onofrj MC, Marx MS, Glover AA (1988a) Spatial frequency-dependent abnormalities of the pattern electroretinogram and visual evoked potentials in a parkinsonian monkey model. Brain 111:131–149.

    Google Scholar 

  148. Cuenca N, Herrero MT, Angulo A, De Juan E, Martínez-Navarrete GC, López S, Barcia C, Martín-Nieto J (2005) Morphological impairments in retinal neurons of the scotopic visual pathway in a monkey model of Parkinson’s disease. J Comp Neurol 493:261–273.

    Google Scholar 

  149. Ghilardi MF, Chun E, Bodis-Wollner I, Dvorzniak M, Glover AA, Onofrj MC (1988b) Systemic 1-methyl, 4-phenyl, 1, 2, 3, 6-tetrahydropyridine (MPTP) administration decreases retinal dopamine content in primates. Life Sci 43:255–262.

    Google Scholar 

  150. Mariani AP, Neff NH, Hadjiconstantinou M (1986) 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) treatment decreases dopamine and increases lipofuscin in mouse retina. Neurosci Lett 72:221–226.

    Google Scholar 

  151. Tatton WG, Kwan MM, Verrier MC, Seniuk NK, Theriault E (1990) MPTP produces reversible disappearance of tyrosine-containing retinal amacrine cells. Brain Res 527:21–31.

    Google Scholar 

  152. Qu ZX, Neff NH, Hadjiconstantinou M (1988) MPP+ depletes retinal dopamine and induces D-1 receptor supersensitivity. Eur J Pharmacol 148:453–455.

    Google Scholar 

  153. Rajawat YS, Bossis I (2008) Autophagy in aging and neurodegenerative disorders. Hormones 7:46–61

    Google Scholar 

  154. Adams JD, Pickford MS, Wong CG (1992) The acute retinal histopathology of MPTP. Neurotoxicology 13:541–549.

    Google Scholar 

  155. Chen ST, Hsu JR, Hsu PC. Chuang JI (2003) The retina as a novel in vivo model for studying the role of molecules of the Bcl-2 family in relation to MPTP neurotoxicity. Neurochem Res 28:805–814.

    Google Scholar 

  156. Biehlmaier O, Alam M, Schmidt WT (2007) A rat model of parkinsonism shows depletion of dopamine in the retina. Neurochem Int 50:189–195.

    Google Scholar 

  157. Zhang X, Jones D, Gonzalez-Lima F (2006) Neurodegeneration produced by rotenone in the mouse retina: a potential to investigate environmental pesticide contributions to neurodegenerative diseases. J Toxicol Environ Health 69:1681–1697.

    Google Scholar 

  158. Rojas JC, Saavedra JA, Gonzalez-Lima F (2008) Neuroprotective effects of memantine in a mouse model of retinal degeneration induced by rotenone. Brain Res 1215:208217.

    Google Scholar 

  159. Beretta S, Wood JP, Derham B, Sala G, Tremolizzo L, Ferrarese C, Osborne NN (2006) Partial mitochondrial complex I inhibition induces oxidative damage and perturbs glutamate transport in primary retinal cultures. Relevance to Leber hereditary optic neuropathy (LHON). Neurobiol Dis 28:308–317.

    Google Scholar 

  160. Hoegger MJ, Lieven CJ, Levin L (2008) Differential production of superoxide by neuronal mitochondria. BMC Neurosci 9:4. Doi:10.1186/1471-2202-9-4.

  161. Drechsel DA, Patel M (2008) Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med 44:1873–1886.

    Google Scholar 

  162. Dutescu RM, Li Q-X, Crowston J, Masters CL, Baird PN, Culvena JG (2009) Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes Arch Clin Exp Ophthalmol Doi: 10.1007/00417-009-1060-3.

  163. Spires TL, Hyman BT (2005) Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx 2:423–437.

    Google Scholar 

  164. Pérez SE, Lumayag S, Kovacs B, Mufsan EJ, Xu S (2009) β-amyloid deposition and functional impairment in the retina of the APPswe/PS1ΔE9 transgenic mouse model of Alzheimer’s disease. Inv Ophthalmol Vis Sci 50:793–800.

    Google Scholar 

  165. Ning A, Cui J, To E, Ashe KH, Matsubara J (2008) Amyloid-β deposits lead to retinal degeneration in a mouse model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 49:5136–5143.

    Google Scholar 

  166. Xin D, Bloomfield SA (2000) Effects of nitric oxide on horizontal cells in the rabbit retina. Vis Neurosci 17:799–811.

    Google Scholar 

  167. Witkovsky P, Dearry A (1992) Functional roles of dopamine in the vertebrate retina. Pro Retin Res 11:247–292.

    Google Scholar 

  168. Lundmark PO, Pandi-Perumal SR, Srinivasan V, Cardinali DP, Rosenstein RE (2007) Melatonin in the eye: implications for glaucoma. Exp Eye Res 84:1021–1030.

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Charles H.V. Hoyle for reading this manuscript and providing useful criticism. This work has been supported by The Comunidad de Madrid NEUROTRANS CM S-SAL-0253-2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Santano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Santano, C., de Lara, M.P., Pintor, J. (2011). Retinal Disturbances in Patients and Animal Models with Huntington’s, Parkinson’s and Alzheimer’s Disease. In: Basu, S., Wiklund, L. (eds) Studies on Experimental Models. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-956-7_10

Download citation

Publish with us

Policies and ethics