Skip to main content

ERK-MAP Kinase Signaling in the Cytoplasm

  • Protocol
  • First Online:
MAP Kinase Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 661))

Abstract

ERK-MAPK is activated by dual phosphorylation of its activation loop TEY motif by the MEK-MAPKK. ERK cytoplasmic activity should be measured by assaying both the level of dually phosphorylated ERK and the level of phosphorylated substrate. We describe two complementary methods for quantitatively measuring ERK activity toward the cytoplasmic p90 ribosomal S6 kinase (RSK). The first method is a straightforward immunoblot of endogenous ERK and RSK phosphoepitopes using phospho-specific antibodies. Infrared fluorescent secondary antibodies provide a linear readout that is quantitated using an Odyssey scanner (LI-COR). The second method is an immunoprecipitation of ERK followed by an in vitro immune complex kinase assay with purified GST-RSK as substrate. The level of ERK phosphotransferase activity, or 32P-labeled phosphate transfer, is quantitated using a PhosphorImager.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen RH, Sarnecki C, Blenis J. (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases Mol Cell Biol 12(3), 915–27.

    PubMed  CAS  Google Scholar 

  2. Gonzalez FA, Seth A, Raden DL, Bowman DS, Fay FS, Davis RJ. (1993) Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus J Cell Biol 122(5), 1089–101.

    Article  PubMed  CAS  Google Scholar 

  3. Lenormand P, Sardet C, Pages G, L’Allemain G, Brunet A, Pouyssegur J. (1993) Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts J Cell Biol 122(5), 1079–88.

    Article  PubMed  CAS  Google Scholar 

  4. Formstecher E, Ramos JW, Fauquet M, et al. (2001) PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase Dev Cell 1(2), 239–50.

    Article  PubMed  CAS  Google Scholar 

  5. Ishibe S, Joly D, Zhu X, Cantley LG. (2003) Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis Mol Cell 12(5), 1275–85.

    Article  PubMed  CAS  Google Scholar 

  6. Teis D, Wunderlich W, Huber LA. (2002) Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction Dev Cell 3(6), 803–14.

    Article  PubMed  CAS  Google Scholar 

  7. Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E. (2004) Sef is a spatial regulator for Ras/MAP kinase signaling Dev Cell 7(1), 33–44.

    Article  PubMed  CAS  Google Scholar 

  8. Casar B, Pinto A, Crespo P. (2009) ERK dimers and scaffold proteins: unexpected partners for a forgotten (cytoplasmic) task Cell Cycle 8(7), 1007–13.

    Article  PubMed  CAS  Google Scholar 

  9. Ramos JW. (2008) The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells Int J Biochem Cell Biol 40(12), 2707–19.

    Article  PubMed  CAS  Google Scholar 

  10. Shaul YD, Seger R. (2007) The MEK/ERK cascade: from signaling specificity to diverse functions Biochim Biophys Acta 1773(8), 1213–26.

    Article  PubMed  CAS  Google Scholar 

  11. Casar B, Pinto A, Crespo P. (2008) Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes Mol Cell 31(5), 708–21.

    Article  PubMed  CAS  Google Scholar 

  12. Anjum R, Blenis J. (2008) The RSK family of kinases: emerging roles in cellular signalling Nat Rev Mol Cell Biol 9(10), 747–58.

    Article  PubMed  CAS  Google Scholar 

  13. Richards SA, Dreisbach VC, Murphy LO, Blenis J. (2001) Characterization of regulatory events associated with membrane targeting of p90 ribosomal S6 kinase 1 Mol Cell Biol 21(21), 7470–80.

    Article  Google Scholar 

  14. Zhao Y, Bjorbaek C, Weremowicz S, Morton CC, Moller DE. (1995) RSK3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: growth factor-stimulated kinase function and nuclear translocation Mol Cell Biol 15(8), 4353–63.

    PubMed  CAS  Google Scholar 

  15. Fisher TL, Blenis J. (1996) Evidence for two catalytically active kinase domains in pp90rsk Mol Cell Biol 16(3), 1212–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Greg Hoffman for assistance with the GST-RSK2 purification protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Blenis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Meida, LLC

About this protocol

Cite this protocol

Mendoza, M.C., Er, E.E., Blenis, J. (2010). ERK-MAP Kinase Signaling in the Cytoplasm. In: Seger, R. (eds) MAP Kinase Signaling Protocols. Methods in Molecular Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-795-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-795-2_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-794-5

  • Online ISBN: 978-1-60761-795-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics