Skip to main content

Biological Membranes as Protein Aggregation Matrices and Targets of Amyloid Toxicity

  • Protocol
  • First Online:
Protein Misfolding and Cellular Stress in Disease and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 648))

Abstract

Aberrantly folded proteins and peptides are hallmarks of amyloid diseases. A deeper knowledge of the pathways leading to the formation of amyloid protein aggregates and of the mechanisms of their cytotoxicity is fundamental for a better understanding of several human diseases with amyloid deposition. Increasing evidence indicates that amyloids arising from different peptides and proteins behave similarly as for their cytotoxic effects. In general, different cell susceptibility to toxic protein aggregates depends on the efficiency of different cell types to accumulate amyloid precursors at their plasma membrane with subsequent growth of pre-fibrillar and fibrillar entities, resulting in membrane perturbation and cell damage. Actually, protein–lipid interaction displays a twofold aspect: on the one hand, the presence of a lipid membrane may influence protein unfolding and the aggregation process; on the other hand, protein aggregates may modify membrane structure and permeability. Understanding the molecular basis of the membrane–protein interaction (but, more extensively, of the surface–protein interaction) may help elucidating some of the factors affecting protein misfolding and aggregation in vivo. This topic has been investigated by a variety of techniques such as atomic force microscopy, transmission electron microscopy, confocal laser microscopy and flow cytometric analysis. In this overview, such techniques will be reviewed with special emphasis to their use in protein aggregation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    Article  PubMed  CAS  Google Scholar 

  2. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  PubMed  CAS  Google Scholar 

  3. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  PubMed  CAS  Google Scholar 

  4. Cecchi C, Baglioni S, Fiorillo C, Pensalfini A, Liguri G, Nosi D, Rigacci S, Bucciantini M, Stefani M (2005) Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates. J Cell Sci 118:3459–3470

    Article  PubMed  CAS  Google Scholar 

  5. Kourie JI, Henry CL (2002) Ion channel formation and membrane-linked pathologies of misfolded hydrophobic proteins: the role of dangerous unchaperoned molecules. Clin Exp Pharmacol Physiol 29:741–753

    Article  PubMed  CAS  Google Scholar 

  6. Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366

    Article  PubMed  CAS  Google Scholar 

  7. Cecchi C, Nichino D, Zampagni M, Bernacchioni C, Evangelisti E, Liguri G, Pensalfini A, Gliozzi A, Stefani M, Relini A (2009) A protective role for lipid raft cholesterol against amyloid-induced membrane damage in human neuroblastoma cells. Biochim Biophys Acta 1788:2204–2216

    Article  PubMed  CAS  Google Scholar 

  8. Gosal WS, Meyers SL, Radford SE, Thomson NH (2006) Amyloid under the atomic force microscope. Protein Pept Lett 13:261–270

    Article  PubMed  CAS  Google Scholar 

  9. Santos NC, Castanho MA (2004) An overwiew of the biophysical applications of atomic force microscopy. Biophys Chem 2:133–149

    Article  Google Scholar 

  10. Möller C, Allen M, Elings V, Engel A, Müller DJ (1999) Tapping-mode atomic microscopy produces faithful high-resolution images of protein surfaces. Biophys J 77:1150–1158

    Article  PubMed  Google Scholar 

  11. Müller DJ, Fotiadis D, Scheurig S, Müller SA, Engel A (1999) Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscopy. Biophys J 76:1101–1111

    Article  PubMed  Google Scholar 

  12. Tashima Y, Oe R, Lee S, Sugihara G (2004) The effect of cholesterol and monosialoganglioside (GM1) on the release and aggregation of amyloid beta-peptide from liposomes prepared from brain membrane-like lipids. J Biol Chem 279:17587–17595

    Article  PubMed  CAS  Google Scholar 

  13. Diociaiuti M, Polzi LZ, Valvo L, Malchiodi-Albedi F, Bombelli C, Gaudiano MC (2006) Calcitonin forms oligomeric pore-like structures in lipid membranes. Biophys J 91:2275–2281

    Article  PubMed  CAS  Google Scholar 

  14. Engel MFM, Khemtemourian L, Kleijer CC, Meeldijk HJD, Jacobs J, Verkleij AJ, de Kruijff B, Killian JA, Hoppener JWM (2008) Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. PNAS 105:6033–6038

    Article  PubMed  CAS  Google Scholar 

  15. Pieri L, Bucciantini M, Guasti P, Savistchenk J, Melki R, Stefani M (2009) Synthetic lipid vesicles recruit native-like aggregates and affect the aggregation process of the prion Ure2p: insights on vesicles permeabilization and charge selectivity. Biophis J 96:3319–3330

    Article  CAS  Google Scholar 

  16. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. PhysiolRev 81:741–766

    CAS  Google Scholar 

  17. Dahlgren KN, Manelli AM, Stine WB, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053

    Article  PubMed  CAS  Google Scholar 

  18. Klein WL (2002) Aβ toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Intl 41:345–352

    Article  CAS  Google Scholar 

  19. Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WI (2004) Synaptic targeting by Alzheimer’s-related amyloid β oligomers. J Neurosci 24:10191–10200

    Article  PubMed  CAS  Google Scholar 

  20. Wakabayashi M, Okada T, Kozutsumi Y, Matsuzaki K (2005) GM1 ganglioside-mediated accumulation of amyloid beta-protein on cell membranes. Biochim Biophys Res Com 328:1019–1023

    Article  CAS  Google Scholar 

  21. Demuro A, Mina E, Kayed R, Milton S, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300

    Article  PubMed  CAS  Google Scholar 

  22. Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall J, Glabe CG (2009) Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 284:4230–4237

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Bucciantini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bucciantini, M., Cecchi, C. (2010). Biological Membranes as Protein Aggregation Matrices and Targets of Amyloid Toxicity. In: Bross, P., Gregersen, N. (eds) Protein Misfolding and Cellular Stress in Disease and Aging. Methods in Molecular Biology, vol 648. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-756-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-756-3_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-755-6

  • Online ISBN: 978-1-60761-756-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics