Skip to main content

Targeting the Purinome

  • Protocol
  • First Online:
Chemogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 575))

Summary

Purines are critical cofactors in the enzymatic reactions that create and maintain living organisms. In humans, there are approximately 3,266 proteins that utilize purine cofactors and these proteins constitute the so-called purinome. The human purinome encompasses a wide-ranging functional repertoire and many of these proteins are attractive drug targets. For example, it is estimated that 30% of modern drug discovery projects target protein kinases and that modulators of small G-proteins comprise more than 50% of currently marketed drugs. Given the importance of purine-binding proteins to drug discovery, the following review will discuss the forces that mediate protein:purine recognition, the factors that determine druggability of a protein target, and the process of structure-based drug design. A review of purine recognition in representatives of the various purine-binding protein families, as well as the challenges faced in targeting members of the purinome in drug discovery campaigns will also be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fiske, C.H., and Subbarow, Y. (1929) Phosphorus compounds of muscle and liver. Science 70, 381–2.

    Article  PubMed  CAS  Google Scholar 

  2. Lohmann, K. (1929) Über die Pyrophosphatfraktion im Muskel. Naturwissenschaften 17, 624–5.

    CAS  Google Scholar 

  3. Meyerhof, O., and Lohmann, K. (1932) Über energetische Wechselbeziehungen zwischen dem Umsatz der Phosphorsäureester im Muskelextrakt. Biochem. Z. 253, 431–61.

    CAS  Google Scholar 

  4. Lohmann, K. (1935) Konstitution der Adeno­pyro­phosporsäure und Adenosindphosphosäure. Biochem. Z. 282, 120–3.

    CAS  Google Scholar 

  5. Makino, K. (1935) Über die Konstitution der Adenosintriphosposäure. Biochem. Z. 278, 161–3.

    CAS  Google Scholar 

  6. Rall, T.W., and Sutherland, E.W. (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. J. Biol. Chem. 232, 1065–76.

    PubMed  CAS  Google Scholar 

  7. Sutherland, E.W., and Rall, T.W. (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. Biol. Chem. 232, 1077–91.

    Google Scholar 

  8. Haynes, R.C. Jr., Sutherland, E.W., and Rall, T.W. (1960) The role of cyclic adenylic acid in hormone action. Recent. Prog. Horm. Res. 16, 121–38.

    PubMed  CAS  Google Scholar 

  9. Birnbaumer, L., Pohl, S.L., Michiel, H., Krans, M.J., and Rodbell, M. (1979) The actions of hormones on the adenyl cyclase system. Adv. Biochem. Psychopharmacol. 3, 185–208.

    Google Scholar 

  10. Birnbaumer, L., Pohl, S.L., and Rodbell, M. (1969) Adenyl cyclase in fat cells. 1. Properties and the effects of adrenocorticotropin and fluoride. J. Biol. Chem. 244, 3468–76.

    PubMed  CAS  Google Scholar 

  11. Birnbaumer, L., Pohl, S.L., and Rodbell, M. (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. II. Comparison between glucagon- and fluoride-stimulated activities. J. Biol. Chem. 246, 1857–60.

    PubMed  CAS  Google Scholar 

  12. Birnbaumer, L., and Rodbell, M. (1969) Adenyl cyclase in fat cells. II. Hormone receptors. J. Biol. Chem. 244, 3477–82.

    PubMed  CAS  Google Scholar 

  13. Pohl, S.L., Birnbaumer, L., and Rodbell, M. (1969) Glucagon-sensitive adenyl cyclase in plasma membrane of hepatic parenchymal cells. Science 164, 566–7.

    Article  PubMed  CAS  Google Scholar 

  14. Pohl, S.L., Birnbaumer, L., and Rodbell, M. (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. I. Properties. J. Biol. Chem. 246, 1849–56.

    PubMed  CAS  Google Scholar 

  15. Pohl, S.L., Krans, H.M., Kozyreff, V., Birnbaumer, L., and Rodbell, M. (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. VI. Evidence for a role of membrane lipids. J. Biol. Chem. 246, 4447–54.

    PubMed  CAS  Google Scholar 

  16. Rodbell, M., Birnbaumer, L., Pohl, S.L., and Krans, H.M. (1979) Properties of the adenyl cyclase systems in liver and adipose cells: The mode of action of hormones. Acta Diabetol. Lat. 7(Suppl 1), 9–63.

    Google Scholar 

  17. Rodbell, M., Birnbaumer, L., and Pohl, S.L. (1971) Characteristics of glucagon action on the hepatic adenylate cyclase system. Biochem. J.125, 58P-9P.

    PubMed  CAS  Google Scholar 

  18. Rodbell, M., Birnbaumer, L., and Pohl, S.L. (1970) Adenyl cyclase in fat cells. 3. Stimulation by secretin and the effects of trypsin on the receptors for lipolytic hormones. J. Biol. Chem. 245, 718–22.

    PubMed  CAS  Google Scholar 

  19. Rodbell, M., Birnbaumer, L., Pohl, S.L., and Sundby, F. (1971) The reaction of glucagon with its receptor: Evidence for discrete regions of activity and binding in the glucagon molecule. Proc. Natl. Acad. Sci. U.S.A. 68, 909–13.

    Article  PubMed  CAS  Google Scholar 

  20. Rodbell, M., Krans, H.M., Pohl, S.L., and Birnbaumer, L. (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. 3. Binding of glucagon: Method of assay and specificity. J. Biol. Chem. 246, 1861–71.

    PubMed  CAS  Google Scholar 

  21. Rodbell, M., Krans, H.M., Pohl, S.L., and Birnbaumer, L. (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J. Biol. Chem. 246, 1872–6.

    PubMed  CAS  Google Scholar 

  22. Rodbell, M., Birnbaumer, L., Pohl, S.L., and Krans, H.M. (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J. Biol. Chem. 246, 1877–82.

    PubMed  CAS  Google Scholar 

  23. Ashman, D.F., Lipton, R., Melicow, M.M., and Price, T.D. (1963) Isolation of adenosine 3¢, 5¢-monophosphate and guanosine 3¢, 5¢-monophosphate from rat urine. Biochem. Biophys. Res. Commun. 11, 330–4.

    Article  PubMed  CAS  Google Scholar 

  24. Furchgott, R.F., and Zawadzki, J.V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–6.

    Article  PubMed  CAS  Google Scholar 

  25. Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., and Chaudhuri, G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 84, 9265–9.

    Article  PubMed  CAS  Google Scholar 

  26. Ignarro, L.J., Byrns, R.E., Buga, G.M., and Wood, K.S. (1987) Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ. Res. 61, 866–79.

    Article  PubMed  CAS  Google Scholar 

  27. Levene, P.A. (1909) Über die Hefenucleinsäure. Biochem. Z. 17, 120–31.

    CAS  Google Scholar 

  28. Levene, P.A. (1919) The structure of yeast nucleic acid. IV. Ammonia hydrolysis. J. Biol. Chem. 40, 415–24.

    CAS  Google Scholar 

  29. Haystead, T.A. (2006) The purinome, a complex mix of drug and toxicity targets. Curr. Top. Med. Chem. 6, 1117–27.

    Article  PubMed  CAS  Google Scholar 

  30. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431, 931–45.

    Article  CAS  Google Scholar 

  31. Cohen, P. (2002) Protein kinases – the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–15.

    Article  PubMed  CAS  Google Scholar 

  32. Ja, W.W., and Roberts, R.W. (2005) G-protein-directed ligand discovery with peptide combinatorial libraries. Trends Biochem. Sci. 30, 318–24.

    Article  PubMed  CAS  Google Scholar 

  33. Marshall, G.R., Head, R.D., and Ragno, R. (2000) Affinity prediction: The sine qua non. In: Di Cera, E. (ed.) Thermodynamics in Biology. Oxford University Press, Oxford, pp. 87–111.

    Google Scholar 

  34. Holdgate, G.A., and Ward, W.H. (2005) Measurements of binding thermodynamics in drug discovery. Drug Discov. Today 10, 1543–50.

    Article  PubMed  CAS  Google Scholar 

  35. Knapp, M., Bellamacina, C., Murray, J.M., and Bussiere, D.E. (2006) Targeting cancer: The challenges and successes of structure-based drug design against the human purinome. Curr. Top. Med. Chem. 6, 1129–59.

    Article  PubMed  CAS  Google Scholar 

  36. Traut, T.W. (1994) Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 1–22.

    Article  PubMed  CAS  Google Scholar 

  37. Cheng, Y., and Prusoff, W.H. (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–108.

    Article  PubMed  CAS  Google Scholar 

  38. Ghaemmaghami, S., Huh, W.K., Bower, K., et al. (2003) Global analysis of protein expression in yeast. Nature 425, 737–41.

    Article  PubMed  CAS  Google Scholar 

  39. Knight, Z.A., and Shokat, K.M. (2005) Features of selective kinase inhibitors. Chem. Biol. 12, 621–37.

    Article  PubMed  CAS  Google Scholar 

  40. Arooz, T., Yam, C.H., Siu, W.Y., Lau, A., Li, K.K., and Poon, R.Y. (2000) On the concentrations of cyclins and cyclin-dependent kinases in extracts of cultured human cells. Biochemistry 39, 9494–501.

    Article  PubMed  CAS  Google Scholar 

  41. Bhatt, R.R., and Ferrell, J.E. Jr. (2000) Cloning and characterization of Xenopus Rsk2, the predominant p90 Rsk isozyme in oocytes and eggs. J. Biol. Chem. 275, 32983–90.

    Article  PubMed  CAS  Google Scholar 

  42. Hopkins, A.L., and Groom, C.R. (2002) The druggable genome. Nat. Rev. Drug Discov. 1, 727–30.

    Article  PubMed  CAS  Google Scholar 

  43. Keller, T.H., Pichota, A., and Yin, Z. (2006) A practical view of ‘druggability’. Curr. Opin. Chem. Biol. 10, 357–61.

    Article  PubMed  CAS  Google Scholar 

  44. Walke, D.W., Han, C., Shaw, J., Wann, E., Zambrowicz, B., and Sands, A. (2001) In vivo drug target discovery: Identifying the best targets from the genome. Curr. Opin. Biotechnol. 12, 626–31.

    Article  PubMed  CAS  Google Scholar 

  45. Schneider, M. (2004) A rational approach to maximize success rate in target discovery. Arch. Pharm. 337, 625–33.

    Article  CAS  Google Scholar 

  46. Peters, K.P., Fauck, J., and Frommel, C. (1996) The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J. Mol. Biol. 256, 201–13.

    Article  PubMed  CAS  Google Scholar 

  47. Liang, J., Edelsbrunner, H., and Woodward, C. (1998) Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci. 7, 1884–97.

    Article  PubMed  CAS  Google Scholar 

  48. Hendlich, M., Rippmann, F., and Barnickel, G. (1997) LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in proteins. J. Mol. Graph. Model. 15, 359–63.

    Article  PubMed  CAS  Google Scholar 

  49. Brady, G.P. Jr., and Stouten, P.F. (2000) Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des. 14, 383–401.

    Article  PubMed  CAS  Google Scholar 

  50. An, J., Totrov, M., and Abagyan, R. (2005) Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol. Cell Proteomics 4, 752–61.

    Article  PubMed  CAS  Google Scholar 

  51. Laskowski, R.A. (1995) SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 13, 323–30.

    Article  PubMed  CAS  Google Scholar 

  52. Goodford, P.J. (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28, 849–57.

    Article  PubMed  CAS  Google Scholar 

  53. Kortvelyesi, T., Dennis, S., Silberstein, M., Brown, L. III, and Vajda, S. (2003) Algorithms for computational solvent mapping of proteins. Proteins 51, 340–51.

    Article  PubMed  CAS  Google Scholar 

  54. Silberstein, M., Dennis, S., Brown, L., Kortvelyesi, T., Clodfelter, K., and Vajda, S. (2003) Identification of substrate binding sites in enzymes by computational solvent mapping. J. Mol. Biol. 332, 1095–113.

    Article  PubMed  CAS  Google Scholar 

  55. Hajduk, P.J., Huth, J.R., and Fesik, S.W. (2005) Druggability indices for protein targets derived from NMR-based screening data. J. Med. Chem. 48, 2518–25.

    Article  PubMed  CAS  Google Scholar 

  56. Brunger, A.T. (1997) X-ray crystallography and NMR reveal complementary views of structure and dynamics. Nat. Struct. Biol. 4 (Suppl), 862–5.

    PubMed  CAS  Google Scholar 

  57. Krebs, E.G., and Beavo, J.A. (1979) Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem. 48, 923–59.

    Article  PubMed  CAS  Google Scholar 

  58. Nestler, E.J., and Greengard, P (1983). Protein phosphorylation in the brain. Nature 305, 583–8.

    Article  PubMed  CAS  Google Scholar 

  59. Lohmann, S.M., Walter, U., and Greengard, P. (1980) Identification of endogenous substrate proteins for cAMP-dependent protein kinase in bovine brain. J. Biol. Chem. 255, 9985–92.

    PubMed  CAS  Google Scholar 

  60. Langan, T.A. (1968) Histone phosphorylation: Stimulation by adenosine 3¢,5¢-mono­phosphate. Science 162, 579–80.

    Article  PubMed  CAS  Google Scholar 

  61. Mayer, S.E., and Krebs, E.G. (1970) Studies on the phosphorylation and activation of skeletal muscle phosphorylase and phosphorylase kinase in vivo. J. Biol. Chem. 245, 3153–60.

    PubMed  CAS  Google Scholar 

  62. Krebs, E.G., and Stull, J.T. (1975) Protein phosphorylation and metabolic control. Ciba Found. Symp. 31, 355–67.

    PubMed  CAS  Google Scholar 

  63. Cobbs, W.H., Barkdoll, A.E. III, and Pugh, E.N. Jr. (1985) Cyclic GMP increases photocurrent and light sensitivity of retinal cones. Nature 317, 64–6.

    Article  PubMed  CAS  Google Scholar 

  64. Kurkin, S.A., Kislov, A.N., and Fesenko, E.E. (1982) Conductance of cytoplasmic membrane of photoreceptors by the method of intracellular dialysis. Biofizika 27, 1053–6.

    PubMed  CAS  Google Scholar 

  65. Yau, K.W., and Nakatani, K. (1985) Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment. Nature 317, 252–5.

    Article  PubMed  CAS  Google Scholar 

  66. Bruch, R.C., and Kalinoski, D.L. (1987) Interaction of GTP-binding regulatory proteins with chemosensory receptors. J. Biol. Chem. 262, 2401–4.

    PubMed  CAS  Google Scholar 

  67. Striem, B.J., Pace, U., Zehavi, U., Naim, M., and Lancet, D. (1989) Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. Biochem. J. 260, 121–6.

    PubMed  CAS  Google Scholar 

  68. Butcher, R.W., and Sutherland, E.W. (1962) Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J. Biol. Chem. 237, 1244–50.

    PubMed  CAS  Google Scholar 

  69. Beavo, J.A., Conti, M., and Heaslip, R.J. (1994) Multiple cyclic nucleotide phosphodiesterases. Mol. Pharmacol. 46, 399–405.

    PubMed  CAS  Google Scholar 

  70. Wang, H., Liu, Y., Hou, J., Zheng, M., Robinson, H., and Ke, H. (2007) Structural insight into substrate specificity of phosphodiesterase 10. Proc. Natl. Acad. Sci. U.S.A. 104, 5782–7.

    Article  PubMed  CAS  Google Scholar 

  71. Wang, H., Liu, Y., Chen, Y., Robinson, H., and Ke, H. (2005) Multiple elements jointly determine inhibitor selectivity of cyclic nucleotide phosphodiesterases 4 and 7. J. Biol. Chem. 280, 30949–55.

    Article  PubMed  CAS  Google Scholar 

  72. Iffland, A., Kohls, D., Low, S., et al. (2005) Structural determinants for inhibitor specificity and selectivity in PDE2A using the wheat germ in vitro translation system. Biochemistry 44, 8312–25.

    Article  CAS  Google Scholar 

  73. Huai, Q., Colicelli, J., and Ke, H. (2003) The crystal structure of AMP-bound PDE4 suggests a mechanism for phosphodiesterase catalysis. Biochemistry 42, 13220–6.

    Article  PubMed  CAS  Google Scholar 

  74. Huai, Q., Wang, H., Sun, Y., Kim, H.Y., Liu, Y., and Ke, H. (2003) Three-dimensional structures of PDE4D in complex with roliprams and implication on inhibitor selectivity. Structure 11, 865–73.

    Article  PubMed  CAS  Google Scholar 

  75. Xu, R.X., Hassell, A.M., Vanderwall, D., et al. (2000) Atomic structure of PDE4: Insights into phosphodiesterase mechanism and specificity. Science 288, 1822–5.

    Article  PubMed  CAS  Google Scholar 

  76. Lee, M.E., Markowitz, J., Lee, J.O., and Lee, H. (2002) Crystal structure of phosphodiesterase 4D and inhibitor complex(1). FEBS Lett. 530, 53–8.

    Article  PubMed  CAS  Google Scholar 

  77. Sung, B.J., Hwang, K.Y., Jeon, Y.H., et al. (2003) Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Nature 425, 98–102.

    Article  PubMed  CAS  Google Scholar 

  78. Huai, Q., Wang, H., Zhang, W., Colman, R.W., Robinson, H., and Ke, H. (2004) Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-1-methylxanthine binding. Proc. Natl. Acad. Sci. U.S.A. 101, 9624–9.

    Article  PubMed  CAS  Google Scholar 

  79. Xu, R.X., Rocque, W.J., Lambert, M.H., Vanderwall, D.E., Luther, M.A., and Nolte, R.T. (2004) Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram. J. Mol. Biol. 337, 355–65.

    Article  PubMed  CAS  Google Scholar 

  80. Scapin, G., Patel, S.B., Chung, C., et al. (2004) Crystal structure of human phosphodiesterase 3B: Atomic basis for substrate and inhibitor specificity. Biochemistry 43, 6091–100.

    Article  PubMed  CAS  Google Scholar 

  81. Liu, S., Mansour, M.N., Dillman, K.S., et al. (2008) Structural basis for the catalytic mechanism of human phosphodiesterase 9. Proc. Natl. Acad. Sci. U.S.A. 105, 13309–14.

    Article  PubMed  CAS  Google Scholar 

  82. Card, G.L., England, B.P., Suzuki, Y., et al. (2004) Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure 12, 2233–47.

    Article  PubMed  CAS  Google Scholar 

  83. Beavo, J.A. (1995) Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms. Physiol. Rev. 75, 725–48.

    PubMed  CAS  Google Scholar 

  84. Zhang, K.Y., Card, G.L., Suzuki, Y., et al. (2004) A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol. Cell. 15, 279–86.

    Article  PubMed  CAS  Google Scholar 

  85. Francis, S.H., Colbran, J.L., McAllister-Lucas, L.M., and Corbin, J.D. (1994) Zinc interactions and conserved motifs of the cGMP-binding cGMP-specific phosphodiesterase suggest that it is a zinc hydrolase. J. Biol. Chem. 269, 22477–80.

    PubMed  CAS  Google Scholar 

  86. Rotella, D.P. (2002) Phosphodiesterase 5 inhibitors: Current status and potential applications. Nat. Rev. Drug Discov. 1, 674–82.

    Article  PubMed  CAS  Google Scholar 

  87. Haning, H., Niewohner, U., Schenke, T., Lampe, T., Hillisch, A., and Bischoff, E. (2005) Comparison of different heterocyclic scaffolds as substrate analog PDE5 inhibitors. Bioorg. Med. Chem. Lett. 15, 3900–7.

    Article  PubMed  CAS  Google Scholar 

  88. Rotella, D.P. (2006) Phosphodiesterases. In: Taylor, J.D., and Triggle, D.J. (eds.) Comprehensive Medicinal Chemistry II. Elsevier, Oxford, pp. 919–57.

    Google Scholar 

  89. Haning, H., Niewoehner, U., Bischoff, E. (2003) Phosphodiesterase Type 5 (PDE5) Inhibitors. Progress in Medicinal Chemistry 41, 246–306.

    Article  Google Scholar 

  90. Sekhar, K.R., Grondin, P., Francis, S.H., and Corbin, J.D. (1996) Design and synthesis of xanthines and cyclic GMP analogues as potent inhibitors of PDE5. In: Schudt, C. (ed.) The Handbook of Immunopharmacology. Academic Press, New York, pp. 135–46.

    Google Scholar 

  91. Huai, Q., Liu, Y., Francis, S.H., Corbin, J.D., and Ke, H. (2004) Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity. J. Biol. Chem. 279, 13095–101.

    Article  PubMed  CAS  Google Scholar 

  92. Kramer, G.L., and Wells, J.N. (1979) Effects of phosphodiesterase inhibitors on cyclic nucleotide levels and relaxation of pig coronary arteries. Mol. Pharmacol. 16, 813–22.

    PubMed  CAS  Google Scholar 

  93. Garst, J.E., Kramer, G.L., Wu, Y.J., and Wells, J.N. (1976) Inhibition of separated forms of phosphodiesterases from pig coronary arteries by uracils and by 7-substituted derivatives of 1-methyl-3-isobutylxanthine. J. Med. Chem. 19, 499–503.

    Article  PubMed  CAS  Google Scholar 

  94. Wang, H., Liu, Y., Huai, Q., et al. (2006) Multiple conformations of phosphodiesterase-5: Implications for enzyme function and drug development. J. Biol. Chem. 281, 21469–79.

    Article  PubMed  CAS  Google Scholar 

  95. Eros, D., Szantai-Kis, C., Kiss, R., et al. (2008) Structure -activity relationships of PDE5 inhibitors. Curr. Med. Chem. 15, 1570–85.

    Article  PubMed  CAS  Google Scholar 

  96. Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science 298, 1912–34.

    Article  PubMed  CAS  Google Scholar 

  97. Adams, JA. (2001) Kinetic and catalytic mechanisms of protein kinases. Chem Rev 101, 2271–90.

    Article  PubMed  CAS  Google Scholar 

  98. Ubersax, J.A., and Ferrell, J.E. Jr. (2007) Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell. Biol. 8, 530–41.

    Article  PubMed  CAS  Google Scholar 

  99. Benson, J.D., Chen, Y.N., Cornell-Kennon, S.A., et al. (2006) Validating cancer drug targets. Nature 441, 451–6.

    Article  PubMed  CAS  Google Scholar 

  100. Walker, I., and Newell, H. (2009) Do molecularly targeted agents in oncology have reduced attrition rates? Nat. Rev. Drug Discov. 8, 15–6.

    Article  PubMed  CAS  Google Scholar 

  101. Vieth, M., Higgs, R.E., Robertson, D.H., Shapiro, M., Gragg, E.A., and Hemmerle, H. (2004) Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim. Biophys. Acta 1697, 243–57.

    Article  PubMed  CAS  Google Scholar 

  102. Karaman, M.W., Herrgard, S., Treiber, D.K., et al. (2008) A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–32.

    Article  PubMed  CAS  Google Scholar 

  103. Liu, Y., Shah, K., Yang, F., Witucki, L., and Shokat, K.M. (1998) A molecular gate which controls unnatural ATP analogue recognition by the tyrosine kinase v-Src. Bioorg. Med. Chem. 6, 1219–26.

    Article  PubMed  CAS  Google Scholar 

  104. Liu, Y., Shah, K., Yang, F., Witucki, L., and Shokat, K.M. (1998) Engineering Src family protein kinases with unnatural nucleotide specificity. Chem. Biol. 5, 91–101.

    Article  PubMed  CAS  Google Scholar 

  105. Bishop, A.C., and Shokat, K.M. (1999) Acquisition of inhibitor-sensitive protein kinases through protein design. Pharmacol. Ther. 82, 337–46.

    Article  PubMed  CAS  Google Scholar 

  106. Blencke, S., Zech, B., Engkvist, O., et al. (2004) Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors. Chem. Biol. 11, 691–701.

    Article  PubMed  CAS  Google Scholar 

  107. Alaimo, P.J., Knight, Z.A., and Shokat, K.M. (2005) Targeting the gatekeeper residue in phosphoinositide 3-kinases. Bioorg. Med. Chem. 13, 2825–36.

    Article  PubMed  CAS  Google Scholar 

  108. Liu, Y., and Gray, N.S. (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2, 358–64.

    Article  PubMed  CAS  Google Scholar 

  109. Manley, P.W., Cowan-Jacob, S.W., and Mestan, J. (2005) Advances in the structural biology, design and clinical development of Bcr-Abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochim. Biophys. Acta. 1754, 3–13.

    Article  PubMed  CAS  Google Scholar 

  110. Lee, J.C., Kassis, S., Kumar, S., Badger, A., and Adams, J.L. (1999) p38 mitogen-activated protein kinase inhibitors – mechanisms and therapeutic potentials. Pharmacol. Ther. 82, 389–97.

    Article  PubMed  CAS  Google Scholar 

  111. Wilson, K.P., McCaffrey, P.G., Hsiao, K., et al. (1997) The structural basis for the specificity of pyridinylimidazole inhibitors of p38 MAP kinase. Chem. Biol. 4, 423–31.

    Article  PubMed  CAS  Google Scholar 

  112. Wang, Z., Canagarajah, B.J., Boehm, J.C., et al. (1998) Structural basis of inhibitor selectivity in MAP kinases. Structure 6, 1117–28.

    Article  PubMed  CAS  Google Scholar 

  113. Zhang, Q., Liu, Y., Gao, F., et al. (2006) Discovery of EGFR selective 4,6-disubstituted pyrimidines from a combinatorial kinase-directed heterocycle library. J. Am. Chem. Soc. 128, 2182–3.

    Article  PubMed  CAS  Google Scholar 

  114. Ghose, A.K., Herbertz, T., Pippin, D.A., Salvino, J.M., and Mallamo, J.P. (2008) Knowledge based prediction of ligand binding modes and rational inhibitor design for kinase drug discovery. J.Med. Chem. 51, 5149–71

    Article  PubMed  CAS  Google Scholar 

  115. Bohmer, F.D., Karagyozov, L., Uecker, A., et al. (2003) A single amino acid exchange inverts susceptibility of related receptor tyrosine kinases for the ATP site inhibitor STI-571. J. Biol. Chem. 278, 5148–55.

    Article  PubMed  CAS  Google Scholar 

  116. Honma, T., Yoshizumi, T., Hashimoto, N., et al. (2001) A novel approach for the development of selective Cdk4 inhibitors: Library design based on locations of Cdk4 specific amino acid residues. J. Med. Chem. 44, 4628–40.

    Article  PubMed  CAS  Google Scholar 

  117. Teague, S.J. (2003) Implications of protein flexibility for drug discovery. Nat. Rev. Drug Discov. 2, 527–41.

    Article  PubMed  CAS  Google Scholar 

  118. Huse, M., and Kuriyan, J. (2002) The conformational plasticity of protein kinases. Cell 109, 275–82.

    Article  PubMed  CAS  Google Scholar 

  119. Wood, E.R., Truesdale, A.T., McDonald, O.B., et al. (2004) A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): Relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 64, 6652–9.

    Article  PubMed  CAS  Google Scholar 

  120. Heron, N.M., Anderson, M., Blowers, D.P., et al. (2005) SAR and inhibitor complex structure determination of a novel class of potent and specific Aurora kinase inhibitors. Bioorg. Med. Chem. Lett. 16, 1320–3.

    Article  PubMed  CAS  Google Scholar 

  121. Bellon, S.F., Kaplan-Lefko, P., Yang, Y., et al (2008) c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations. J. Biol. Chem. 283, 2675–83.

    Article  PubMed  CAS  Google Scholar 

  122. Stamos, J., Sliwkowski, M.X., and Eigenbrot, C. (2002) Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor.J. Biol. Chem. 277, 46265–72.

    Article  PubMed  CAS  Google Scholar 

  123. Kufareva, I., and Abagyan, R. (2008) Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. J. Med. Chem. 51, 7921–32.

    Article  PubMed  CAS  Google Scholar 

  124. Vale, R.D., and Milligan, R.A. (2000) The way things move: Looking under the hood of molecular motor proteins. Science 288, 88–95.

    Article  PubMed  CAS  Google Scholar 

  125. Sakowicz, R., Finer, J.T., Beraud, C., et al. (2004) Antitumor activity of a kinesin inhibitor. Cancer Res. 64, 3276–80.

    Article  PubMed  CAS  Google Scholar 

  126. Kolomeisky, A.B., and Fisher, M.E. (2007) Molecular motors: A theorist’s perspective. Annu. Rev. Phys. Chem. 58, 675–95.

    Article  PubMed  CAS  Google Scholar 

  127. Vale, R.D., and Fletterick, R.J. (1997) The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745–77.

    Article  PubMed  CAS  Google Scholar 

  128. Vetter, I.R., and Wittinghofer, A. (1999) Nucleoside triphosphate-binding proteins: Different scaffolds to achieve phosphoryl transfer. Q. Rev. Biophys. 32, 1–56.

    Article  PubMed  CAS  Google Scholar 

  129. Turner, J., Anderson, R., Guo, J., Beraud, C., Fletterick, R., and Sakowicz, R. (2001) Crystal structure of the mitotic spindle kinesin Eg5 reveals a novel conformation of the neck-linker. J. Biol. Chem. 276, 25496–502.

    Article  PubMed  CAS  Google Scholar 

  130. Sablin, E.P., Kull, F.J., Cooke, R., Vale, R.D., and Fletterick, R.J. (1996) Crystal structure of the motor domain of the kinesin-related motor ncd. Nature 380, 555–9.

    Article  PubMed  CAS  Google Scholar 

  131. Kull, F.J., Sablin, E.P., Lau, R., Fletterick, R.J., and Vale, R.D. (1996) Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–5.

    Article  PubMed  CAS  Google Scholar 

  132. Lad, L., Luo, L., Carson, J.D., et al. (2008) Mechanism of inhibition of human KSP by ispinesib. Biochemistry 47, 3576–85.

    Article  PubMed  CAS  Google Scholar 

  133. Hopkins, S.C., Vale, R.D., and Kuntz, I.D. (2000) Inhibitors of kinesin activity from structure-based computer screening. Biochemistry 39, 2805–14.

    Article  PubMed  CAS  Google Scholar 

  134. Mayer, T.U., Kapoor, T.M., Haggarty, S.J., King, R.W., Schreiber, S.L., and Mitchison, T.J. (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–4.

    Article  PubMed  CAS  Google Scholar 

  135. Maliga, Z., Kapoor, T.M., and Mitchison, T.J. (2002) Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem. Biol. 9, 989–96.

    Article  PubMed  CAS  Google Scholar 

  136. Luo, L., Carson, J.D., Dhanak, D., et al. (2004) Mechanism of inhibition of human KSP by monastrol: Insights from kinetic analysis and the effect of ionic strength on KSP inhibition. Biochemistry 43, 15258–66.

    Article  PubMed  CAS  Google Scholar 

  137. Yan, Y.W., Sardana, V., Xu, B., et al. (2004) Inhibition of a mitotic motor protein: Where, how, and conformational consequences. J. Mol. Biol. 335, 547–54.

    Article  PubMed  CAS  Google Scholar 

  138. Zhang, B., Liu, J.F., Xu, Y., and Ng, S.C. (2008) Crystal structure of HsEg5 in complex with clinical candidate CK0238273 provides insight into inhibitory mechanism, potency, and specificity. Biochem. Biophys. Res. Commun. 372, 565–70.

    Article  PubMed  CAS  Google Scholar 

  139. Zhang, Y., and Xu, W. (2008) Progress on kinesin spindle protein inhibitors as anti-cancer agents. Anticancer Agents Med. Chem. 8, 698–704.

    PubMed  CAS  Google Scholar 

  140. Liu, F., You, Q.D., and Chen, Y.D. (2006) Pharmacophore identification of KSP inhibitors. Bioorg. Med. Chem. Lett. 17, 722–6.

    Article  PubMed  CAS  Google Scholar 

  141. Maliga, Z., and Mitchison, T.J. (2006) Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol. BMC Chem. Biol. 6, 2.

    Article  PubMed  CAS  Google Scholar 

  142. Brier, S., Lemaire, D., DeBonis, S., Forest, E., and Kozielski, F. (2006) Molecular dissection of the inhibitor binding pocket of mitotic kinesin Eg5 reveals mutants that confer resistance to antimitotic agents. J. Mol. Biol. 360, 360–76.

    Article  PubMed  CAS  Google Scholar 

  143. Rickert, K.W., Schaber, M., Torrent, M., et al. (2008) Discovery and biochemical characterization of selective ATP competitive inhibitors of the human mitotic kinesin KSP. Arch. Biochem. Biophys. 469, 220–31.

    Article  PubMed  CAS  Google Scholar 

  144. Parrish, C.A., Adams, N.D., Auger, K.R., et al. (2007) Novel ATP-competitive kinesin spindle protein inhibitors. J. Med. Chem. 50, 4939–52.

    Article  PubMed  CAS  Google Scholar 

  145. Tecle, H., Shao, J., Li, Y., et al. (2009) Beyond the MEK-pocket: Can current MEK kinase inhibitors be utilized to synthesize novel type III NCKIs? Does the MEK-pocket exist in kinases other than MEK? Bioorg. Med. Chem. Lett. 19, 226–9.

    Article  PubMed  CAS  Google Scholar 

  146. Lewis, J.A., Lebois, E.P., and Lindsley, C.W. (2008) Allosteric modulation of kinases and GPCRs: Design principles and structural diversity. Curr. Opin. Chem. Biol. 12, 269–80.

    Article  PubMed  CAS  Google Scholar 

  147. Downward, J. (1998) Ras signalling and apoptosis. Curr. Opin. Genet. Dev. 8, 49–54.

    Article  PubMed  CAS  Google Scholar 

  148. Buday, L., and Downward, J. (2008) Many faces of Ras activation. Biochim. Biophys. Acta. 1786, 178–87.

    PubMed  CAS  Google Scholar 

  149. Nakao, M., Janssen, J.W., Seriu, T., and Bartram, C.R. (2000) Rapid and reliable detection of N-ras mutations in acute lymphoblastic leukemia by melting curve analysis using LightCycler technology. Leukemia 14, 312–5.

    Article  PubMed  CAS  Google Scholar 

  150. Burmer, G.C., and Loeb, L.A. (1989) Mutations in the KRAS2 oncogene during progressive stages of human colon carcinoma. Proc. Natl. Acad. Sci. U.S.A. 86, 2403–7.

    Article  PubMed  CAS  Google Scholar 

  151. Almoguera, C., Shibata, D., Forrester, K., Martin, J., Arnheim, N., and Perucho, M. (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53, 549–54.

    Article  PubMed  CAS  Google Scholar 

  152. Bourne, H.R., Sanders, D.A., and McCormick, F. (1991) The GTPase superfamily: Conserved structure and molecular mechanism. Nature 349, 117–27.

    Article  PubMed  CAS  Google Scholar 

  153. Paduch, M., Jelen, F., and Otlewski, J. (2001) Structure of small G proteins and their regulators. Acta Biochim. Pol. 48, 829–50.

    PubMed  CAS  Google Scholar 

  154. Feuerstein, J., Kalbitzer, H.R., John, J., Goody, R.S., and Wittinghofer, A. (1987) Characterisation of the metal-ion-GDP complex at the active sites of transforming and nontransforming p21 proteins by observation of the 17O-Mn superhyperfine coupling and by kinetic methods. Eur. J. Biochem. 162, 49–55.

    Article  PubMed  CAS  Google Scholar 

  155. Ahmadian, M.R. (2002) Prospects for anti-ras drugs. Br. J. Haematol. 116, 511–8.

    Article  PubMed  CAS  Google Scholar 

  156. Dever, T.E., Glynias, M.J., and Merrick, W.C. (1987) GTP-binding domain: Three consensus sequence elements with distinct spacing. Proc Natl Acad Sci U.S.A. 84, 1814–8.

    Article  PubMed  CAS  Google Scholar 

  157. Scheidig, A.J., Franken, S.M., Corrie, J.E., et al. (1995) X-ray crystal structure analysis of the catalytic domain of the oncogene product p21H-ras complexed with caged GTP and mant dGppNHp. J. Mol. Biol. 253, 132–50.

    Article  PubMed  CAS  Google Scholar 

  158. Zhong, J.M., Chen-Hwang, M.C., and Hwang, Y.W. (1995) Switching nucleotide specificity of Ha-Ras p21 by a single amino acid substitution at aspartate 119. J. Biol. Chem. 270, 10002–7.

    Article  PubMed  CAS  Google Scholar 

  159. Schmidt, G., Lenzen, C., Simon, I., et al. (1996) Biochemical and biological consequences of changing the specificity of p21ras from guanosine to xanthosine nucleotides. Oncogene 12, 87–96.

    PubMed  CAS  Google Scholar 

  160. Kosloff, M., and Selinger, Z. (2001) Substrate assisted catalysis – application to G proteins. Trends Biochem. Sci. 26, 161–6.

    Article  PubMed  CAS  Google Scholar 

  161. Kosloff, M., and Selinger, Z. (2003) GTPase catalysis by Ras and other G-proteins: Insights from substrate directed superimposition. J. Mol. Biol. 331, 1157–70.

    Article  PubMed  CAS  Google Scholar 

  162. Frech, M., Darden, T.A., Pedersen, L.G., et al. (1994) Role of glutamine-61 in the hydrolysis of GTP by p21H-ras: An experimental and theoretical study. Biochemistry 33, 3237–44.

    Article  PubMed  CAS  Google Scholar 

  163. Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A. (1995) The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554–60.

    Article  PubMed  CAS  Google Scholar 

  164. Zhang, J., and Matthews, C.R. (1998) Ligand binding is the principal determinant of stability for the p21(H)-ras protein. Biochemistry 37, 14881–90.

    Article  PubMed  CAS  Google Scholar 

  165. Zhang, J., and Matthews, C.R. (1998) The role of ligand binding in the kinetic folding mechanism of human p21(H-ras) protein. Biochemistry 37, 14891–9.

    Article  PubMed  CAS  Google Scholar 

  166. Spoerner, M., Herrmann, C., Vetter, I.R., Kalbitzer, H.R., and Wittinghofer, A. (2001) Dynamic properties of the Ras switch I region and its importance for binding to effectors. Proc. Natl. Acad. Sci. U.S.A. 98, 4944–9.

    Article  PubMed  CAS  Google Scholar 

  167. Geyer, M., Schweins, T., Herrmann, C., Prisner, T., Wittinghofer, A., and Kalbitzer, H.R. (1996) Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP. Biochemistry 35, 10308–20.

    Article  PubMed  CAS  Google Scholar 

  168. Al-Mulla, F., Milner-White, E.J., Going, J.J., and Birnie, G.D. (1999) Structural differences between valine-12 and aspartate-12 Ras proteins may modify carcinoma aggression. J. Pathol. 187, 433–8.

    Article  PubMed  CAS  Google Scholar 

  169. Herrmann, C., Block, C., Geisen, C., et al. (1998) Sulindac sulfide inhibits Ras signaling. Oncogene 17, 1769–76.

    Article  PubMed  CAS  Google Scholar 

  170. Waldmann, H., Karaguni, M.I., Carpintero, M., et al (2004) Sulindac-derived Ras pathway inhibitors target the Ras-Raf interaction and downstream effectors in the Ras pathway. Angew. Chem. Int. Ed. Engl. 43, 454–8.

    Article  PubMed  CAS  Google Scholar 

  171. Kyte, J. (2003) The basis of the hydrophobic effect. Biophys. Chem. 100, 193–203.

    Article  PubMed  CAS  Google Scholar 

  172. Ruelle, P., and Kesselring, U.W. (1998) The hydrophobic effect. 1. A consequence of the mobile order in H-bonded liquids. J. Pharm. Sci. 87, 987–97.

    Article  PubMed  CAS  Google Scholar 

  173. Ruelle, P., and Kesselring, U.W. (1998) The hydrophobic effect. 2. Relative importance of the hydrophobic effect on the solubility of hydrophobes and pharmaceuticals in H-bonded solvents. J. Pharm. Sci. 87, 998–1014.

    Article  PubMed  CAS  Google Scholar 

  174. Ruelle, P., and Kesselring, U.W. (1998) The hydrophobic effect. 3. A key ingredient in predicting n-octanol-water partition coefficients. J. Pharm. Sci. 87, 1015–24.

    Article  PubMed  CAS  Google Scholar 

  175. Sharp, K.A., Nicholls, A., Fine, R.F., and Honig, B. (1991) Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252, 106–9.

    Article  PubMed  CAS  Google Scholar 

  176. Honig, B., Sharp, K., and Gilson, M. (1989) Electrostatic interactions in proteins. Prog. Clin. Biol. Res. 289, 65–74.

    PubMed  CAS  Google Scholar 

  177. Sharp, K.A., and Honig, B. (1990) Electrostatic interactions in macromolecules: Theory and applications. Annu. Rev. Biophys. Biophys. Chem. 19, 301–32.

    Article  PubMed  CAS  Google Scholar 

  178. Sinha, N, and Smith-Gill, S.J. (2002) Electrostatics in protein binding and function. Curr. Protein Pept. Sci. 3, 601–14.

    Article  PubMed  CAS  Google Scholar 

  179. Paulini, R., Muller, K., and Diederich, F. (2005) Orthogonal multipolar interactions in structural chemistry and biology. Angew. Chem. Int. Ed. Engl. 44, 1788–805.

    Article  PubMed  CAS  Google Scholar 

  180. Israelachvili, J.N. (1973) Van der Waals forces in biological systems. Q. Rev. Biophys. 16, 341–87.

    Article  Google Scholar 

  181. Fleming, P.J., and Rose, G.D. (2005) Do all backbone polar groups in proteins form hydrogen bonds? Protein Sci. 14, 1911–7.

    Article  PubMed  CAS  Google Scholar 

  182. Perrin, C.L., and Nielson, J.B. (1997) “Strong” hydrogen bonds in chemistry and biology. Annu. Rev. Phys. Chem. 48, 511–44.

    Article  PubMed  CAS  Google Scholar 

  183. Kim, K.S., Tarakeshwar, P., and Lee, J.Y. (2000) Molecular clusters of pi-systems: Theoretical studies of structures, spectra, and origin of interaction energies. Chem Rev 100, 4145–86.

    Article  PubMed  CAS  Google Scholar 

  184. McGaughey, G.B., Gagne, M., and Rappe, A.K. (1998) pi-Stacking interactions. Alive and well in proteins. J. Biol. Chem. 273, 15458–63.

    Article  PubMed  CAS  Google Scholar 

  185. Sinnokrot, M.O., and Sherrill, C.D. (2004) Substituent effects in pi-pi interactions: Sandwich and T-shaped configurations. J. Am. Chem. Soc. 126, 7690–7.

    Article  PubMed  CAS  Google Scholar 

  186. Crowley, P.B., and Golovin, A. (2005) Cation–pi interactions in protein–protein interfaces. Proteins 59, 231–9.

    Article  PubMed  CAS  Google Scholar 

  187. Cubero, E., Luque, F.J., and Orozco, M. (1998) Is polarization important in cation-pi interactions? Proc. Natl. Acad. Sci. U.S.A. 95, 5976–80.

    Article  PubMed  CAS  Google Scholar 

  188. Gallivan, J.P, and Dougherty, D.A. (1999) Cation– pi interactions in structural biology. Proc. Natl. Acad. Sci. U.S.A. 96, 9459–64.

    Article  PubMed  CAS  Google Scholar 

  189. Wittinghofer, A., and Waldmann, H. Ras – A molecular switch involved in tumor formation. Angew. Chem. Int. Ed. Engl. 39, 4192–214

    Google Scholar 

  190. Noonan, T., Brown, N., Dudycz, L., and Wright, G. (1991) Interaction of GTP derivatives with cellular and oncogenic ras-p21 proteins. J. Med. Chem. 34, 1302–7.

    Article  PubMed  CAS  Google Scholar 

  191. Ahmadian, MR. (2002) Prospects for anti-ras drugs. Br. J. Haematol. 116, 511–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Murray, J.M., Bussiere, D.E. (2009). Targeting the Purinome. In: Jacoby, E. (eds) Chemogenomics. Methods in Molecular Biology, vol 575. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-274-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-274-2_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-273-5

  • Online ISBN: 978-1-60761-274-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics