Skip to main content

Visualization of Fluorescence-Tagged Proteins in Fission Yeast: The Analysis of Mitotic Spindle Dynamics Using GFP-Tubulin Under the Native Promoter

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 545))

Abstract

Mitotic spindle microtubules pull chromosomes toward each pole to generate two daughter cells. Proper spindle formation and function are required to prevent tumorigenesis and cell death. The fission yeast Schizosaccharomyces pombe has been widely used as a model organism to understand the molecular mechanism of mitosis due to its convenience in genetics, molecular biology, and cell biology. The development of fluorescent protein systems and microscopy enables us to investigate the “true” behavior of proteins in living fission yeast cells using a strain with a fluorescence-tagged gene under its native promoter. In this way the level of expression of tagged protein is similar to the level of wild-type nontagged protein. In this chapter we illustrate standard methods to generate strains expressing fluorescently tagged proteins and to observe them under the microscope. Specifically, we introduce a GFP-tubulin strain to analyze the dynamic behavior of spindle microtubules. Observation of GFP-tubulin under its native promoter has illuminated the process of kinetochore–microtubule attachment process in fission yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moreno, S., Klar, A. and Nurse, P. (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol., 194, 795–823.

    Article  PubMed  CAS  Google Scholar 

  2. Bähler, J., Wu, J.Q., Longtine, M.S., Shah, N.G., McKenzie, A., 3rd, Steever, A.B., Wach, A., Philippsen, P. and Pringle, J.R. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast, 14, 943–951.

    Article  PubMed  Google Scholar 

  3. Hentges, P., Van Driessche, B., Tafforeau, L., Vandenhaute, J. and Carr, A.M. (2005) Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast, 22, 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  4. Sato, M., Dhut, S. and Toda, T. (2005) New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe. Yeast, 22, 583–591.

    Article  PubMed  CAS  Google Scholar 

  5. Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E. and Knop, M. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast, 21, 947–962.

    Article  PubMed  CAS  Google Scholar 

  6. Usui, T., Maekawa, H., Pereira, G. and Schiebel, E. (2003) The XMAP215 homologue Stu2 at yeast spindle pole bodies regulates microtubule dynamics and anchorage. EMBO J., 22, 4779–4793.

    Article  PubMed  CAS  Google Scholar 

  7. Tanaka, K., Mukae, N., Dewar, H., van Breugel, M., James, E.K., Prescott, A.R., Antony, C. and Tanaka, T.U. (2005) Molecular mechanisms of kinetochore capture by spindle microtubules. Nature, 434, 987–994.

    Article  PubMed  CAS  Google Scholar 

  8. Sato, M. and Toda, T. (2007) Alp7/TACC is a crucial target in Ran-GTPase-dependent spindle formation in fission yeast. Nature, 447, 334–337.

    Article  PubMed  CAS  Google Scholar 

  9. Grallert, A., Krapp, A., Bagley, S., Simanis, V. and Hagan, I.M. (2004) Recruitment of NIMA kinase shows that maturation of the S. pombe spindle-pole body occurs over consecutive cell cycles and reveals a role for NIMA in modulating SIN activity. Genes Dev., 18, 1007–1021.

    Article  PubMed  CAS  Google Scholar 

  10. Radcliffe, P., Hirata, D., Childs, D., Vardy, L. and Toda, T. (1998) Identification of novel temperature-sensitive lethal alleles in essential b-tubulin and nonessential a2-tubulin genes as fission yeast polarity mutants. Mol. Biol. Cell, 9, 1757–1771.

    PubMed  CAS  Google Scholar 

  11. Maundrell, K. (1990) nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J. Biol. Chem., 265, 10857–10864.

    PubMed  CAS  Google Scholar 

  12. Garcia, M.A., Vardy, L., Koonrugsa, N. and Toda, T. (2001) Fission yeast ch-TOG/XMAP215 homologue Alp14 connects mitotic spindles with the kinetochore and is a component of the Mad2-dependent spindle checkpoint. EMBO J., 20, 3389–3401.

    Article  PubMed  CAS  Google Scholar 

  13. Bridge, A.J., Morphew, M., Bartlett, R. and Hagan, I.M. (1998) The fission yeast SPB component Cut12 links bipolar spindle formation to mitotic control. Genes Dev., 12, 927–942.

    Article  PubMed  CAS  Google Scholar 

  14. Kilmartin, J.V. (2003) Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J. Cell Biol., 162, 1211–1221.

    Article  PubMed  CAS  Google Scholar 

  15. West, R.R., Vaisberg, E.V., Ding, R., Nurse, P. and McIntosh, J.R. (1998) cut11 +: A gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe. Mol. Biol. Cell, 9, 2839–2855.

    PubMed  CAS  Google Scholar 

  16. Saitoh, S., Takahashi, K. and Yanagida, M. (1997) Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialized chromatin required for equal segregation. Cell, 90, 131–143.

    Article  PubMed  CAS  Google Scholar 

  17. Yamamoto, M., Imai, Y. and Watanabe, Y. (1997) Mating and sporulation in Schizosaccharomyces pombe. The Molecular and Cellular Biology of the yeast Saccharomyces, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1037–1106.

    Google Scholar 

  18. Yamamoto, A., West, R.R., McIntosh, J.R. and Hiraoka, Y. (1999) A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J. Cell Biol., 145, 1233–1249.

    Article  PubMed  CAS  Google Scholar 

  19. Ding, D.Q., Chikashige, Y., Haraguchi, T. and Hiraoka, Y. (1998) Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J Cell Sci, 111, 701–712.

    PubMed  CAS  Google Scholar 

  20. Maundrell, K. (1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene, 123, 127–130.

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka, K. and Kanbe, T. (1986) Mitosis in the fission yeast Schizosaccharomyces pombe as revealed by freeze-substitution electron microscopy. J. Cell Sci., 80, 253–268.

    PubMed  CAS  Google Scholar 

  22. Ding, R., McDonald, K.L. and McIntosh, J.R. (1993) Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J. Cell Biol., 120, 141–151.

    Article  PubMed  CAS  Google Scholar 

  23. Hagan, I.M. and Hyams, J.S. (1988) The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe. J. Cell Sci., 89, 343–357.

    PubMed  Google Scholar 

  24. Uzawa, S. and Yanagida, M. (1992) Visualization of centromeric and nucleolar DNA in fission yeast by fluorescence in situ hybridization. J. Cell Sci., 101, 267–275.

    PubMed  Google Scholar 

  25. Mallavarapu, A., Sawin, K. and Mitchison, T. (1999) A switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe. Curr. Biol., 9, 1423–1426.

    Article  PubMed  CAS  Google Scholar 

  26. Khodjakov, A., La Terra, S. and Chang, F. (2004) Laser microsurgery in fission yeast; role of the mitotic spindle midzone in anaphase B. Curr. Biol., 14, 1330–1340.

    Article  PubMed  CAS  Google Scholar 

  27. Drummond, D.R. and Cross, R.A. (2000) Dynamics of interphase microtubules in Schizosaccharomyces pombe. Curr. Biol., 10, 766–775.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rafael E. Carazo-Salas for technical advice on microscopy and many invaluable discussions. We also thank Akira Yamashita for methods on meiosis, Miguel Angel Garcia and Kazuhide Asakawa for microscopy, Hiromi Maekawa and Elmar Schiebel for the 3GFP plasmid, Roger Tsien for providing mRFP and mCherry, and Kayoko Tanaka for transferring the mCherry plasmid. We are grateful to members of the Yeast Group on the third floor of the Lincoln’s Inn Fields Laboratories and to Masayuki Yamamoto for continuous support. M.S. was a recipient of JSPS postdoctoral fellowship for research abroad. The London Research Institute is supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sato, M., Toya, M., Toda, T. (2009). Visualization of Fluorescence-Tagged Proteins in Fission Yeast: The Analysis of Mitotic Spindle Dynamics Using GFP-Tubulin Under the Native Promoter. In: McAinsh, A. (eds) Mitosis. Methods in Molecular Biology, vol 545. Humana Press. https://doi.org/10.1007/978-1-60327-993-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-993-2_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-992-5

  • Online ISBN: 978-1-60327-993-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics