Skip to main content

Adipokines, Nutrition, and Obesity

  • Chapter
  • First Online:
Preventive Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

The traditional view of white adipose tissue (WAT) existing solely as an energy reservoir is no longer true. Although predominantly consisting of adipocytes, WAT is also composed of preadipocytes, endothelial cells, fibroblasts, and macrophages located in the stromovascular fraction. As a result, WAT is a complex and highly active secretory organ capable of modulating appetite, energy expenditure, insulin sensitivity, endocrine and reproductive systems, bone metabolism, inflammation, and immunity. The release of adipokines and cytokines by WAT is one of the most important ways this tissue influences physiological and pathological processes throughout the body. Adipokines are biologically active mediators released from adipocytes and include proteins such as leptin, adiponectin (APN), resistin, adipsin, and visfatin, as well as factors traditionally considered as cytokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and others. Obesity is characterized by an increase in fat mass, which is associated with a state of chronic inflammation with macrophage infiltration of WAT and abnormal production of adipokines and cytokines. Leptin, APN, resistin, visfatin, IL-6, and TNF-α help provide a link between obesity and development of insulin resistance, impaired glucose tolerance, and Type 2 diabetes (T2D) commonly associated with obesity. How specific nutrients affect production and secretion of adipokines and WAT-derived cytokines is currentlycontroversial

Key Points

• White adipose tissue (WAT) is a complex and highly active secretory organ, sending out and responding to signals that modulate appetite, energy expenditure, insulin sensitivity, endocrine and reproductive systems, bone metabolism, inflammation, and immunity.

• Obesity is characterized by an increase in fat mass, increased macrophage infiltration of WAT, and an abnormal adipokine and cytokine production, contributing to generation of a state of low-grade chronic inflammation.

• Leptin, adiponectin, visfatin, resistin, and adipsin are adipokines since they are predominantly secreted from adipocytes. The cytokines IL-6 and TNF-α are also secreted from WAT but are not considered adipokines since adipocytes are not the primary source of these molecules.

• Leptin, adiponectin, resistin, and visfatin, as well as IL-6 and TNF-α, provide an important link between obesity, insulin resistance, and inflammatory disorders.

• The effects of nutrients on adipokines and cytokines secreted from WAT are still highly controversial and warrant further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJ, and Xu A. (2005) Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem 280, 18341–7.

    Article  PubMed  CAS  Google Scholar 

  2. Wang P, Mariman E, Renes J, and Keijer J. (2008) The secretory function of adipocytes in the physiology of white adipose tissue. J Cell Physiol 216, 3–13.

    Article  PubMed  CAS  Google Scholar 

  3. Al-Hasani H, and Joost HG. (2005) Nutrition-/diet-induced changes in gene expression in white adipose tissue. Best Pract Res Clin Endocrinol Metab 19, 589–603.

    Article  PubMed  CAS  Google Scholar 

  4. Guilherme A, Virbasius JV, Puri V, and Czech MP. (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9, 367–77.

    Article  PubMed  CAS  Google Scholar 

  5. Sethi JK, and Vidal-Puig AJ. (2007) Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res 48, 1253–62.

    Article  PubMed  CAS  Google Scholar 

  6. Tilg H, and Moschen AR. (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6, 772–83.

    Article  PubMed  CAS  Google Scholar 

  7. Fantuzzi G. (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115, 911–9; quiz 20.

    Article  PubMed  CAS  Google Scholar 

  8. Kershaw EE, and Flier JS. (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89, 2548–56.

    Article  PubMed  CAS  Google Scholar 

  9. Lorenzo M, Fernandez-Veledo S, Vila-Bedmar R, Garcia-Guerra L, De Alvaro C, and Nieto-Vazquez I. (2008) Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. J Anim Sci 86, E94–104.

    Article  PubMed  CAS  Google Scholar 

  10. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, and Ferrante AW, Jr. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112, 1796–808.

    PubMed  CAS  Google Scholar 

  11. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, and Feve B. (2006) Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 17, 4–12.

    PubMed  CAS  Google Scholar 

  12. Charriere G, Cousin B, Arnaud E, Andre M, Bacou F, Penicaud L, and Casteilla L. (2003) Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem 278, 9850–5.

    Article  PubMed  CAS  Google Scholar 

  13. Curat CA, Miranville A, Sengenes C, Diehl M, Tonus C, Busse R, and Bouloumie A. (2004) From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 53, 1285–92.

    Article  PubMed  CAS  Google Scholar 

  14. Sartipy P, and Loskutoff DJ. (2003) Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A 100, 7265–70.

    Article  PubMed  CAS  Google Scholar 

  15. Frayn KN, Karpe F, Fielding BA, Macdonald IA, and Coppack SW. (2003) Integrative physiology of human adipose tissue. Int J Obes Relat Metab Disord 27, 875–88.

    Article  PubMed  CAS  Google Scholar 

  16. Hamdy O, Porramatikul S, and Al-Ozairi E. (2006) Metabolic obesity: the paradox between visceral and subcutaneous fat. Current diabetes Rev 2, 367–73.

    Google Scholar 

  17. Fantuzzi G, and Faggioni R. (2000) Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol 68, 437–46.

    PubMed  CAS  Google Scholar 

  18. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, and Friedman JM. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–32.

    Article  PubMed  CAS  Google Scholar 

  19. Juge-Aubry CE, Henrichot E, and Meier CA. (2005) Adipose tissue: a regulator of inflammation. Best Pract Res Clin Endocrinol Metab 19, 547–66.

    Article  PubMed  CAS  Google Scholar 

  20. Meier U, and Gressner AM. (2004) Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 50, 1511–25.

    Article  PubMed  CAS  Google Scholar 

  21. Buettner C, Pocai A, Muse ED, Etgen AM, Myers MG Jr, and Rossetti L. (2006) Critical role of STAT3 in leptin’s metabolic actions. Cell Metab 4, 49–60.

    Article  PubMed  CAS  Google Scholar 

  22. Robertson SA, Leinninger GM, and Myers MG Jr. (2008) Molecular and neural mediators of leptin action. Physiol Behav 94, 637–42.

    Article  PubMed  CAS  Google Scholar 

  23. Gong Y, Ishida-Takahashi R, Villanueva EC, Fingar DC, Munzberg H, and Myers MG Jr. (2007) The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms. J Biol Chem 282, 31019–27.

    Article  PubMed  CAS  Google Scholar 

  24. Valassi E, Scacchi M, and Cavagnini F. (2008) Neuroendocrine control of food intake. Nutr Metab Cardiovasc Dis 18, 158–68.

    Article  PubMed  CAS  Google Scholar 

  25. Munzberg H, and Myers MG, Jr. (2005) Molecular and anatomical determinants of central leptin resistance. Nat Neurosci 8, 566–70.

    Article  PubMed  CAS  Google Scholar 

  26. Rosenbaum M, Sy M, Pavlovich K, Leibel RL, and Hirsch J. (2008) Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest 118, 2583–91.

    PubMed  CAS  Google Scholar 

  27. Chan JL, and Mantzoros CS. (2005) Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet 366, 74–85.

    Article  PubMed  CAS  Google Scholar 

  28. Ehling A, Schaffler A, Herfarth H, Tarner IH, Anders S, Distler O, Paul G, Distler J, Gay S, Scholmerich J, Neumann E, and Muller-Ladner U. (2006) The potential of adiponectin in driving arthritis. J Immunol 176, 4468–78.

    PubMed  CAS  Google Scholar 

  29. Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, Syversen U, and Reseland JE. (2004) Adiponectin and its receptors are expressed in bone-forming cells. Bone 35, 842–9.

    Article  PubMed  CAS  Google Scholar 

  30. Delaigle AM, Jonas JC, Bauche IB, Cornu O, and Brichard SM. (2004) Induction of adiponectin in skeletal muscle by inflammatory cytokines: in vivo and in vitro studies. Endocrinology 145, 5589–97.

    Article  PubMed  CAS  Google Scholar 

  31. Oh DK, Ciaraldi T, and Henry RR. (2007) Adiponectin in health and disease. Diabetes Obes Metab 9, 282–9.

    Article  PubMed  CAS  Google Scholar 

  32. Trujillo ME, and Scherer PE. (2005) Adiponectin—journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med 257, 167–75.

    Article  PubMed  CAS  Google Scholar 

  33. Kadowaki T, and Yamauchi T. (2005) Adiponectin and adiponectin receptors. Endocr Rev 26, 439–51.

    Article  PubMed  CAS  Google Scholar 

  34. Waki H, Yamauchi T, Kamon J, Kita S, Ito Y, Hada Y, Uchida S, Tsuchida A, Takekawa S, and Kadowaki T. (2005) Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology 146, 790–6.

    Article  PubMed  CAS  Google Scholar 

  35. Chandran M, Phillips SA, Ciaraldi T, and Henry RR. (2003) Adiponectin: more than just another fat cell hormone? Diabetes Care 26, 2442–50.

    Article  PubMed  CAS  Google Scholar 

  36. Guzik TJ, Mangalat D, and Korbut R. (2006) Adipocytokines - novel link between inflammation and vascular function? J Physiol Pharmacol 57, 505–28.

    PubMed  CAS  Google Scholar 

  37. Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, Kamon J, Kobayashi M, Suzuki R, Hara K, Kubota N, Terauchi Y, Froguel P, Nakae J, Kasuga M, Accili D, Tobe K, Ueki K, Nagai R, and Kadowaki T. (2004) Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem 279, 30817–22.

    Article  PubMed  CAS  Google Scholar 

  38. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, and Kadowaki T. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–9.

    Article  PubMed  CAS  Google Scholar 

  39. Fayad R, Pini M, Sennello JA, Cabay RJ, Chan L, Xu A, and Fantuzzi G. (2007) Adiponectin deficiency protects mice from chemically induced colonic inflammation. Gastroenterology 132, 601–14.

    Article  PubMed  CAS  Google Scholar 

  40. Masaie H, Oritani K, Yokota T, Takahashi I, Shirogane T, Ujiie H, Ichii M, Saitoh N, Maeda T, Tanigawa R, Oka K, Hoshida Y, Tomiyama Y, and Kanakura Y. (2007) Adiponectin binds to chemokines via the globular head and modulates interactions between chemokines and heparan sulfates. Exp Hematol 35, 947–56.

    Article  PubMed  CAS  Google Scholar 

  41. Takemura Y, Ouchi N, Shibata R, Aprahamian T, Kirber MT, Summer RS, Kihara S, and Walsh K. (2007) Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J Clin Invest 117, 375–86.

    Article  PubMed  CAS  Google Scholar 

  42. Okamoto Y, Arita Y, Nishida M, Muraguchi M, Ouchi N, Takahashi M, Igura T, Inui Y, Kihara S, Nakamura T, Yamashita S, Miyagawa J, Funahashi T, and Matsuzawa Y. (2000) An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res 32, 47–50.

    Article  PubMed  CAS  Google Scholar 

  43. Mlinar B, Marc J, Janez A, and Pfeifer M. (2007) Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta 375, 20–35.

    Article  PubMed  CAS  Google Scholar 

  44. Combs TP, Berg AH, Obici S, Scherer PE, and Rossetti L. (2001) Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest 108, 1875–81.

    PubMed  CAS  Google Scholar 

  45. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, and Kadowaki T. (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8, 1288–95.

    Article  PubMed  CAS  Google Scholar 

  46. Diez JJ, and Iglesias P. (2003) The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 148, 293–300.

    Article  PubMed  CAS  Google Scholar 

  47. Boden G, Cheung P, Mozzoli M, and Fried SK. (2003) Effect of thiazolidinediones on glucose and fatty acid metabolism in patients with type 2 diabetes. Metabolism 52, 753–9.

    Article  PubMed  CAS  Google Scholar 

  48. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, and Matsuzawa Y. (1999) Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100, 2473–6.

    PubMed  CAS  Google Scholar 

  49. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, and Matsuzawa Y. (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102, 1296–301.

    PubMed  CAS  Google Scholar 

  50. Goldstein BJ, and Scalia R. (2004) Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 89, 2563–8.

    Article  PubMed  CAS  Google Scholar 

  51. Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y, Kumada M, Hotta K, Nishida M, Takahashi M, Nakamura T, Shimomura I, Muraguchi M, Ohmoto Y, Funahashi T, and Matsuzawa Y. (2002) Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation 105, 2893–8.

    Article  PubMed  CAS  Google Scholar 

  52. Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, Ohashi K, Sakai N, Shimomura I, Kobayashi H, Terasaka N, Inaba T, Funahashi T, and Matsuzawa Y. (2002) Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106, 2767–70.

    Article  PubMed  CAS  Google Scholar 

  53. Tao L, Gao E, Jiao X, Yuan Y, Li S, Christopher TA, Lopez BL, Koch W, Chan L, Goldstein BJ, and Ma XL. (2007) Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 115, 1408–16.

    Article  PubMed  CAS  Google Scholar 

  54. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, and Lazar MA. (2001) The hormone resistin links obesity to diabetes. Nature 409, 307–12.

    Article  PubMed  CAS  Google Scholar 

  55. Kim KH, Lee K, Moon YS, and Sul HS. (2001) A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J Biol Chem 276, 11252–6.

    Article  PubMed  CAS  Google Scholar 

  56. Holcomb IN, Kabakoff RC, Chan B, Baker TW, Gurney A, Henzel W, Nelson C, Lowman HB, Wright BD, Skelton NJ, Frantz GD, Tumas DB, Peale FV Jr, Shelton DL, and Hebert CC. (2000) FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J 19, 4046–55.

    Article  PubMed  CAS  Google Scholar 

  57. Steppan CM, and Lazar MA. (2004) The current biology of resistin. J Intern Med 255, 439–47.

    Article  PubMed  CAS  Google Scholar 

  58. Antuna-Puente B, Feve B, Fellahi S, and Bastard JP. (2008) Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab 34, 2–11.

    Article  PubMed  CAS  Google Scholar 

  59. Tilg H, and Moschen AR. (2008) Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14, 222–31.

    Article  PubMed  CAS  Google Scholar 

  60. Lago F, Dieguez C, Gomez-Reino J, and Gualillo O. (2007) Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract 3, 716–24.

    Article  CAS  Google Scholar 

  61. Samal B, Sun Y, Stearns G, Xie C, Suggs S, and McNiece I. (1994) Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol 14, 1431–7.

    PubMed  CAS  Google Scholar 

  62. Luk T, Malam Z, and Marshall JC. (2008) Pre-B cell colony-enhancing factor (PBEF)/visfatin: a novel mediator of innate immunity. J Leukoc Biol 83, 804–16.

    Article  PubMed  CAS  Google Scholar 

  63. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, and Shimomura I. (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307, 426–30.

    Article  PubMed  CAS  Google Scholar 

  64. Lopez-Bermejo A, Chico-Julia B, Fernandez-Balsells M, Recasens M, Esteve E, Casamitjana R, Ricart W, and Fernandez-Real JM. (2006) Serum visfatin increases with progressive beta-cell deterioration. Diabetes 55, 2871–5.

    Article  PubMed  CAS  Google Scholar 

  65. Filippatos TD, Derdemezis CS, Kiortsis DN, Tselepis AD, and Elisaf MS. (2007) Increased plasma levels of visfatin/pre-B cell colony-enhancing factor in obese and overweight patients with metabolic syndrome. J Endocrinol Invest 30, 323–6.

    PubMed  CAS  Google Scholar 

  66. Spiegelman BM, Frank M, and Green H. (1983) Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J Biol Chem 258, 10083–9.

    PubMed  CAS  Google Scholar 

  67. White RT, Damm D, Hancock N, Rosen BS, Lowell BB, Usher P, Flier JS, and Spiegelman BM. (1992) Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem 267, 9210–3.

    PubMed  CAS  Google Scholar 

  68. Cook KS, Min HY, Johnson D, Chaplinsky RJ, Flier JS, Hunt CR, and Spiegelman BM. (1987) Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science 237, 402–5.

    Article  PubMed  CAS  Google Scholar 

  69. Hotamisligil GS. (1999) The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med 245, 621–5.

    Article  PubMed  CAS  Google Scholar 

  70. Uysal KT, Wiesbrock SM, and Hotamisligil GS. (1998) Functional analysis of tumor necrosis factor (TNF) receptors in TNF-alpha-mediated insulin resistance in genetic obesity. Endocrinology 139, 4832–8.

    Article  PubMed  CAS  Google Scholar 

  71. Hotamisligil GS. (2003) Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord 27 Suppl 3, S53–5.

    Article  PubMed  CAS  Google Scholar 

  72. Ptitsyn AA, and Gimble JM. (2007) Analysis of circadian pattern reveals tissue-specific alternative transcription in leptin signaling pathway. BMC Bioinformatics 8 Suppl 7, S15.

    Article  PubMed  CAS  Google Scholar 

  73. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, and Gimble JM. (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55, 962–70.

    Article  PubMed  CAS  Google Scholar 

  74. Bray MS, and Young ME. (2007) Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte. Obes Rev 8, 169–81.

    Article  PubMed  CAS  Google Scholar 

  75. Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, Takamura T, Kaneko S, and Fujimura A. (2005) Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146, 5631–6.

    Article  PubMed  CAS  Google Scholar 

  76. Imbeault P. (2007) Environmental influences on adiponectin levels in humans. Appl Physiol Nutr Metab 32, 505–11.

    Article  PubMed  CAS  Google Scholar 

  77. Matarese G. (2000) Leptin and the immune system: how nutritional status influences the immune response. Eur Cytokine Netw 11, 7–14.

    PubMed  CAS  Google Scholar 

  78. Poppitt SD, Leahy FE, Keogh GF, Wang Y, Mulvey TB, Stojkovic M, Chan YK, Choong YS, McArdle BH, and Cooper GJ. (2006) Effect of high-fat meals and fatty acid saturation on postprandial levels of the hormones ghrelin and leptin in healthy men. Eur J Clin Nutr 60, 77–84.

    Article  PubMed  CAS  Google Scholar 

  79. Esposito K, Nappo F, Giugliano F, Di Palo C, Ciotola M, Barbieri M, Paolisso G, and Giugliano D. (2003) Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am J Clin Nutr 78, 1135–40.

    PubMed  CAS  Google Scholar 

  80. Poppitt SD, Keogh GF, Lithander FE, Wang Y, Mulvey TB, Chan YK, McArdle BH, and Cooper GJ. (2008) Postprandial response of adiponectin, interleukin-6, tumor necrosis factor-alpha, and C-reactive protein to a high-fat dietary load. Nutrition 24, 322–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gove, M.E., Fantuzzi, G. (2010). Adipokines, Nutrition, and Obesity. In: Bendich, A., Deckelbaum, R. (eds) Preventive Nutrition. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-542-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-542-2_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-541-5

  • Online ISBN: 978-1-60327-542-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics