Skip to main content

Transgenic Reporter Tools Tracing Endogenous Canonical Wnt Signaling in Xenopus

  • Protocol
Wnt Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 469))

Abstract

Activation of the canonical Wnt pathway leads to the transcriptional activation of a particular subset of downstream Wnt target genes. To track this localized cellular output in a living organism, reporter constructs can be designed containing multimerized consensus lymphoid enhancer binding factor (LEF)-1/T cell factor (TCF) transcription factor binding sites, generally referred to as TCF optimal promoter (TOP) sites. In Xenopus, several Wnt-responsive reporter systems have been designed containing a number of these TOP sites that, in combination with a minimal promoter, drive the expression of a reporter gene. Following transgenic integration in Xenopus embryos, a Wnt reporter tool reveals the spatiotemporal delineation of endogenous Wnt pathway activities throughout development. Assumed to be a general readout of the Wnt pathway, such reporters can assist in elucidating unknown functional implications in developing Xenopus embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logan, C. Y., Nusse, R. (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20, 781–810.

    Article  PubMed  CAS  Google Scholar 

  2. Hoppler, S., Kavanagh, C. L. (2007) Wnt signaling: variety at the core. J Cell Sci 120, 385–393.

    Article  PubMed  CAS  Google Scholar 

  3. Xu, Q., Wang, Y., Dabdoub, A., et al. (2004) Vascular development in the retina and inner ear: control by Norrin and Friz-zled-4, a high-affinity ligand-receptor pair. Cell 116, 883–895.

    Article  PubMed  CAS  Google Scholar 

  4. Kazanskaya, O., Glinka, A., del BarcoBar-rantes, I., et al. (2004) R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogen-esis. Dev Cell 7, 525–534.

    Article  PubMed  CAS  Google Scholar 

  5. Kioussi, C., Briata, P., Baek, S. H., et al. (2002) Identification of a Wnt/Dvl/beta-Catenin → Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111, 673–685.

    Article  PubMed  CAS  Google Scholar 

  6. Easwaran, V., Pishvaian, M., Salimuddin, et al. (1999) Cross-regulation of beta-cat-enin-LEF/TCF and retinoid signaling pathways. Curr Biol 9, 1415–1418.

    Article  PubMed  CAS  Google Scholar 

  7. Zorn, A. M., Barish, G. D., Williams, B. O., et al. (1999) Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Mol Cell 4, 487–498.

    Article  PubMed  CAS  Google Scholar 

  8. Barolo, S. (2006) Transgenic Wnt/TCF pathway reporters: all you need is Lef? Onco-gene 25, 7505–7511.

    Article  CAS  Google Scholar 

  9. Korinek, V., Barker, N., Morin, P. J., et al. (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275, 1784–1787.

    Article  PubMed  CAS  Google Scholar 

  10. Dorsky, R. I., Sheldahl, L. C., Moon, R. T. (2002) A transgenic Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev Biol 241, 229–237.

    Article  PubMed  CAS  Google Scholar 

  11. DasGupta, R., Fuchs, E. (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557–4568.

    PubMed  CAS  Google Scholar 

  12. Staal, F.J., Meeldijk, J., Moerer, P., et al. (2001) Wnt signaling is required for thy-mocyte development and activates Tcf-1 mediated transcription. Eur J Immunol 31, 285–293.

    Article  PubMed  CAS  Google Scholar 

  13. Maretto, S., Cordenonsi, M., Dupont, S., et al. (2003) Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci USA 100, 3299–3304.

    Article  PubMed  CAS  Google Scholar 

  14. Mohamed, O. A., Clarke, H. J., Dufort, D. (2004) Beta-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Dev Dyn 231, 416–424.

    Article  PubMed  CAS  Google Scholar 

  15. Nakaya, M. A., Biris, K., Tsukiyama, T., et al. (2005) Wnt3a links left-right determination with segmentation and antero-posterior axis elongation. Development 132, 5425–5436.

    Article  PubMed  CAS  Google Scholar 

  16. Geng, X., Xiao, L., Lin, G. F., et al. (2003) Lef/ Tcf-dependent Wnt/beta-catenin signaling during Xenopus axis specification. FEBS Lett 547, 1–6.

    Article  PubMed  CAS  Google Scholar 

  17. Denayer, T., Van Roy, F., Vleminckx, K. (2006) In vivo tracing of canonical Wnt signaling in Xenopus tadpoles by means of an inducible transgenic reporter tool. FEBS Lett 580, 393–398.

    Article  PubMed  CAS  Google Scholar 

  18. Sive, H. L., Grainger, R. M., Harland, R. M. (eds.) (2000) Early Development of Xenopus laevis, A Laboratory Manual. Cold Spring Harbor Laboratory Press, NY.

    Google Scholar 

  19. Staal, F. J., Burgering, B. M., van de Weter-ing, M., et al. (1999) Tcf-1-mediated transcription in T lymphocytes: differential role for glycogen synthase kinase-3 in fibroblasts and T cells. Int Immunol 11, 317–323.

    Article  PubMed  CAS  Google Scholar 

  20. Chalfie, M., Tu, Y., Euskirchen, G., et al. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  21. Corish, P., Tyler-Smith, C. (1999) Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12, 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  22. Huang, W. Y., Aramburu, J., Douglas, P. S., et al. (2000) Transgenic expression of green fluorescence protein can cause dilated car-diomyopathy. Nat Med 6, 482–483.

    Article  PubMed  CAS  Google Scholar 

  23. Li, X., Zhao, X., Fang, Y., et al. (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273, 34970–34975.

    Article  PubMed  CAS  Google Scholar 

  24. Bevis, B. J., Glick, B. S. (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) Nat Biotechnol 20, 83–87.

    Article  PubMed  CAS  Google Scholar 

  25. Chae, J., Zimmerman, L. B., Grainger, R. M. (2002) Inducible control of tissue-specific transgene expression in Xenopus tropicalis transgenic lines. Mech Dev 117, 235–241.

    Article  PubMed  CAS  Google Scholar 

  26. Das, B., Brown, D. D. (2004) Controlling transgene expression to study Xenopus lae-vis metamorphosis. Proc Natl Acad Sci USA 101, 4839–4842.

    Article  PubMed  CAS  Google Scholar 

  27. Recillas-Targa, F., Pikaart, M. J., Burgess-Beusse, B., et al. (2002) Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc Natl Acad Sci USA 99, 6883–6888.

    Article  PubMed  CAS  Google Scholar 

  28. Sekkali, B., Tran, H. T., Crabbe, E., et al. (2008) Chicken beta-globin insulator overcomes variegation of transgenes in Xenopus embryos. Faseb J 22, 2534–2540.

    Article  PubMed  CAS  Google Scholar 

  29. De Robertis, E. M., Larrain, J., Oelge-schlager, M., et al. (2000) The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat Rev Genet 1, 171–181.

    Article  PubMed  Google Scholar 

  30. Amaya, E., Kroll, K. L. (1999) A method for generating transgenic frog embryos in (Sharpe, P., Mason, I., eds.) Molecular Embryology: Methods and Protocols, Humana, Totowa, NJ, pp. 393–414.

    Chapter  Google Scholar 

  31. Hirsch, N., Zimmerman, L. B., Gray, J., et al. (2002) Xenopus tropicalis transgenic lines and their use in the study of embryonic induction. Dev Dyn 225, 522–535.

    Article  PubMed  CAS  Google Scholar 

  32. Jansen, E. J., Holling, T. M., van Herp, F., et al. (2002) Transgene-driven protein expression specific to the intermediate pituitary melanotrope cells of Xenopus laevis. FEBS Lett 516, 201–207.

    Article  PubMed  CAS  Google Scholar 

  33. Nieuwkoop, P. D., Faber, J. (eds.) (1994) Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of development from the fertilized egg till the end of metamorphosis. Garland Science, NY.

    Google Scholar 

  34. Broadbent, J., Read, E. M. (1999) Wholemount in situ hybridization of Xenopus and zebrafish embryos in (Guille, M., ed.) Molecular Methods in Developmental Biology, Xenopus and Zebrafish, Humana, Totowa, NJ, pp. 57–67.

    Chapter  Google Scholar 

Download references

Acknowledgments

TD is a postdoctoral fellow of the Research Foundation—Flanders (FWO). Research is supported by the Belgian Foundation against Cancer and the Research Foundation—Flanders (FWO).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Denayer, T., Tran, H.T., Vleminckx, K. (2008). Transgenic Reporter Tools Tracing Endogenous Canonical Wnt Signaling in Xenopus . In: Vincan, E. (eds) Wnt Signaling. Methods in Molecular Biology, vol 469. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-469-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-469-2_24

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-468-5

  • Online ISBN: 978-1-60327-469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics