Skip to main content

Evolution of the Wnt Pathways

  • Protocol
Wnt Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 469))

Abstract

Wnt proteins mediate the transduction of at least three major signaling pathways that play central roles in many early and late developmental decisions. They control diverse cellular behaviors, such as cell fate decisions, proliferation, and migration, and are involved in many important embryological events, including axis specification, gastrulation, and limb, heart, or neural development. The three major Wnt pathways are activated by ligands, the Wnts, which clearly belong to the same gene family. However, their signal is then mediated by three separate sets of extracellular, cytoplasmic, and nuclear components that are pathway-specific and that distinguish each of them. Homologs of the Wnt genes and of the Wnt pathways components have been discovered in many eukaryotic model systems and functional investigations have been carried out for most of them. This review extracts available data on the Wnt pathways, from the protist Dictyostelium discoideum to humans, and provides from an evolutionary prospective the overall molecular and functional conservation of the three Wnt pathways and their activators throughout the eukaryotic superkingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma, R. P., Chopra, V. L. (1976) Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila mela-nogaster. Dev Biol 48, 461–465.

    Article  PubMed  CAS  Google Scholar 

  2. Baker, N. E. (1987) Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. Embo J 6, 1765–1773.

    PubMed  CAS  Google Scholar 

  3. Nusse, R., Varmus, H. E. (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109.

    Article  PubMed  CAS  Google Scholar 

  4. Van Ooyen, A., Nusse, R. (1984) Structure and nucleotide sequence of the putative mammary oncogene int-1; proviral insertions leave the protein-encoding domain intact. Cell 39, 233–240.

    Article  PubMed  Google Scholar 

  5. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., Nusse, R. (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649–657.

    Article  PubMed  CAS  Google Scholar 

  6. Dale, T. C. (1998) Signal transduction by the Wnt family of ligands. Biochem J 329, 209–223.

    PubMed  CAS  Google Scholar 

  7. Huelsken, J., Birchmeier, W. (2001) New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11, 547–553.

    Article  PubMed  CAS  Google Scholar 

  8. Korswagen, H. C. (2002) Canonical and non-canonical Wnt signaling pathways in Caenorhabditis elegans: variations on a common signaling theme. Bioessays 24, 801–810.

    Article  PubMed  CAS  Google Scholar 

  9. Wharton, K. A., Jr. (2003) Runnin ’ with the Dvl: proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction. Dev Biol 253, 1–17.

    Article  PubMed  CAS  Google Scholar 

  10. Sheldahl, L. C., Slusarski, D. C., Pandur, P., Miller, J. R., Kuhl, M., Moon, R. T. (2003) Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell Biol 161, 769–777.

    Article  PubMed  CAS  Google Scholar 

  11. Huelsken, J., Behrens, J. (2002) The Wnt signaling pathway. J Cell Sci 115, 3977–3978.

    Article  PubMed  CAS  Google Scholar 

  12. Croce, J. C., Wu, S. Y., Byrum, C., Xu, R., Duloquin, L., Wikramanayake, A. H., Gache, C., McClay, D. R. (2006) A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus. Dev Biol 300, 121–131.

    Article  PubMed  CAS  Google Scholar 

  13. Du, S. J., Purcell, S. M., Christian, J. L., McGrew, L. L., Moon, R. T. (1995) Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol Cell Biol 15, 2625–2634.

    PubMed  CAS  Google Scholar 

  14. Van Ooyen, A., Kwee, V., Nusse, R. (1985) The nucleotide sequence of the human int-1 mammary oncogene; evolutionary conservation of coding and non-coding sequences. Embo J 4, 2905 –2909.

    PubMed  Google Scholar 

  15. Kusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentfer, J., Schmidt, H. A., Technau, U., von Haeseler, A., Hobmayer, B., Martindale, M. Q., Holstein, T. W. (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433, 156–160.

    Article  PubMed  CAS  Google Scholar 

  16. Lee, P. N., Pang, K., Matus, D. Q., Martindale, M. Q. (2006) A WNT of things to come: Evolution of Wnt signaling and polarity in cnidarians. Semin Cell Dev Biol 17, 157–167.

    Article  PubMed  Google Scholar 

  17. Nichols, S. A., Dirks, W., Pearse, J. S., King, N. (2006) Early evolution of animal cell signaling and adhesion genes. Proc Natl Acad Sci USA 103, 12451 –12456.

    Article  PubMed  CAS  Google Scholar 

  18. The Wnt homepage. Available at: www.stan-ford.edu/?rnusse/wntwindow.html.

  19. Prud'homme, B., Lartillot, N., Balavoine, G., Adoutte, A., Vervoort, M. (2002) Phylogenetic analysis of the Wnt gene family. Insights from lophotrochozoan members. Curr Biol 12, 1395.

    Article  PubMed  Google Scholar 

  20. Friedman, R., Hughes, A. L. (2003) The temporal distribution of gene duplication events in a set of highly conserved human gene families. Mol Biol Evol 20, 154–161.

    Article  PubMed  CAS  Google Scholar 

  21. Furlong, R. F., Holland, P. W. (2004) Poly-ploidy in vertebrate ancestry: Ohno and beyond. Biological Journal of the Linnean Society 82, 425–430.

    Article  Google Scholar 

  22. Holland, P. W., Garcia-Fernandez, J., Williams, N. A., Sidow, A. (1994) Gene duplications and the origins of vertebrate development. Dev Suppl 125–133.

    Google Scholar 

  23. Wong, G. T., Gavin, B. J., McMahon, A. P. (1994) Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol 14, 6278–6286.

    Article  PubMed  CAS  Google Scholar 

  24. Kilian, B., Mansukoski, H., Barbosa, F. C, Ulrich, F., Tada, M., Heisenberg, C. P. (2003) The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech Dev 120, 467–476.

    Article  PubMed  CAS  Google Scholar 

  25. Wikramanayake, A. H, Peterson, R., Chen, J., Huang, L., Bince, J. M., McClay, D. R., Klein, W. H. (2004) Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Genesis 39, 194–205.

    Article  PubMed  CAS  Google Scholar 

  26. Tada, M., Smith, J. C. (2000) Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127, 2227–2238.

    PubMed  CAS  Google Scholar 

  27. Heisenberg, C. P., Tada, M., Rauch, G. J., Saude, L., Concha, M. L., Geisler, R., Stemple, D. L., Smith, J. C., Wilson, S. W. (2000) Silber-blick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81.

    Article  PubMed  CAS  Google Scholar 

  28. Tao, Q., Yokota, C., Puck, H., Kofron, M., Birsoy, B., Yan, D., Asashima, M., Wylie, C. C., Lin, X., Heasman, J. (2005) Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120, 857–871.

    Article  PubMed  CAS  Google Scholar 

  29. Coates, J. C., Harwood, A. J. (2001) Cell-cell adhesion and signal transduction during Dictyostelium development. J Cell Sci 114, 4349–4358.

    PubMed  CAS  Google Scholar 

  30. Ruvkun, G., Hobert, O. (1998) The taxonomy of developmental control in Caenorhabditis elegans. Science 282, 2033–2041

    Article  PubMed  CAS  Google Scholar 

  31. Korswagen, H. C., Herman, M. A., Clevers, H. C. (2000) Distinct beta-catenins mediate adhesion and signaling functions in C. ele-gans. Nature 406, 527–532.

    Article  PubMed  CAS  Google Scholar 

  32. DasGupta, R., Kaykas, A., Moon, R. T., Perrimon, N. (2005) Functional genomic analysis of the Wnt-wingless signaling pathway. Science 308, 826–833.

    Article  PubMed  CAS  Google Scholar 

  33. Harwood, A. J., Plyte, S. E., Woodgett, J., Strutt, H., Kay, R. R. (1995) Glycogen syn-thase kinase 3 regulates cell fate in Dictyostel-ium. Cell 80, 139–148.

    Article  PubMed  CAS  Google Scholar 

  34. Croce, J. C., McClay, D. R. (2006) The canonical Wnt pathway in embryonic axis polarity. Semin Cell Dev Biol 17, 168–174.

    Article  PubMed  CAS  Google Scholar 

  35. Plyte, S. E., O'Donovan, E., Woodgett, J. R., Harwood, A. J. (1999) Glycogen synthase kinase-3 (GSK-3) is regulated during Dictyostelium development via the serpentine receptor cAR3. Development 126, 325–333.

    PubMed  CAS  Google Scholar 

  36. Mlodzik, M. (1999) Planar polarity in the Drosophila eye: a multifaceted view of signaling specificity and cross-talk. Embo J 18, 6873–6879.

    Article  PubMed  CAS  Google Scholar 

  37. Adler, P. N., Lee, H. (2001) Frizzled signaling and cell-cell interactions in planar polarity. Curr Opin Cell Biol 13, 635–640.

    Article  PubMed  CAS  Google Scholar 

  38. Guo, N., Hawkins, C., Nathans, J. (2004) Frizzled6 controls hair patterning in mice. Proc Natl Acad Sci USA 101, 9277–9281.

    Article  PubMed  CAS  Google Scholar 

  39. Dabdoub, A., Kelley, M. W. (2005) Planar cell polarity and a potential role for a Wnt morphogen gradient in stereociliary bundle orientation in the mammalian inner ear. J Neurobiol 64, 446–457.

    Article  PubMed  CAS  Google Scholar 

  40. Solnica-Krezel, L. (2005) Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 15, R213–228.

    Article  PubMed  CAS  Google Scholar 

  41. Mlodzik, M. (2002) Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet 18, 564–571.

    Article  PubMed  CAS  Google Scholar 

  42. Croce, J., Duloquin, L., Lhomond, G., McClay, D. R., Gache, C. (2006) Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development. Development 133, 547–557.

    Article  PubMed  CAS  Google Scholar 

  43. Beane, W. S., Gross, J. M., McClay, D. R. (2006) RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation. Dev Biol 292, 213–225.

    Article  PubMed  CAS  Google Scholar 

  44. Jiang, D., Munro, E. M., Smith, W. C. (2005) Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of noto-chord cells. Curr Biol 15, 79–85.

    Article  PubMed  CAS  Google Scholar 

  45. Wu, M., Herman, M. A. (2006) A novel noncanonical Wnt pathway is involved in the regulation of the asymmetric B cell division in C. elegans. Dev Biol 293, 316–329.

    Article  PubMed  CAS  Google Scholar 

  46. Kühl, M., Sheldahl, L. C., Park, M., Miller, J. R., Moon, R. T. (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16, 279–283.

    Article  PubMed  Google Scholar 

  47. Pandur, P., Maurus, D., Kuhl, M. (2002) Increasingly complex: new players enter the Wnt signaling network. Bioessays 24, 881–884.

    Article  PubMed  CAS  Google Scholar 

  48. Kühl, M., Sheldahl, L. C., Malbon, C. C., Moon, R. T. (2000) Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem 275, 12701–12711.

    Article  PubMed  Google Scholar 

  49. Sheldahl, L. C., Park, M., Malbon, C. C., Moon, R. T. (1999) Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol 9, 695–698.

    Article  PubMed  CAS  Google Scholar 

  50. Cook, D., Fry, M. J., Hughes, K., Sumathipala, R., Woodgett, J. R., Dale, T. C. (1996) Wingless inactivates glycogen synthase kinase-3 via an intracellular signaling pathway which involves a protein kinase C. Embo J 15, 4526–4536.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Cynthia Bradham for critical evaluation of the manuscript. J. C. thanks Athula Wikramanayake for allowing me the opportunity to contribute to this book. This work was supported by grants NIH 61464 and HD 14483.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Croce, J.C., McClay, D.R. (2008). Evolution of the Wnt Pathways. In: Vincan, E. (eds) Wnt Signaling. Methods in Molecular Biology, vol 469. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-469-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-469-2_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-468-5

  • Online ISBN: 978-1-60327-469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics