Skip to main content

Physical Properties of the Nucleus Studied by Micropipette Aspiration

  • Protocol
The Nucleus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 464))

Abstract

Understanding the physical properties of the cell nucleus is critical for developing a deeper understanding of nuclear structure and organization as well as how mechanical forces induce changes in gene expression. We use micropipette aspiration to induce large, local deformations in the nucleus, and microscopy to image nuclear shape as well as the response of fluorescently labeled components in the inner nucleus (chromatin and nucleoli) and the nuclear envelope (lamins and membranes). By monitoring the response of nuclear structures to these deformations, we gain insights into the material properties of the nucleus. Here we describe the experimental protocols for micropipette aspiration of nuclei in living cells as well as isolated nuclei. In addition to confocal imaging, deformed nuclei can be imaged by brightfield or epifluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcia-Cardena, G., Comander, J., Anderson. K.R., Blackman, B.R., and Gimbrone, M.A. Jr. (2001) Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl. Acad. Sci. USA 98, 4478-4485

    Article  PubMed  CAS  Google Scholar 

  2. Mattout, A., Dechat, T., Adam, S.A., Goldman, R.D., and Gruenbaum, Y. (2006) Nuclear lamins, diseases and aging. Curr. Opin. Cell Biol. 18, 335-341

    Article  PubMed  CAS  Google Scholar 

  3. Broers, J.L, Ramaekers, F.C., Bonne, G., Yaou, R.B., and Hutchison, C.J. (2006) Nuclear lamins: laminopathies and their role in premature ageing. Physiol. Rev. 86, 967-1008

    Article  PubMed  CAS  Google Scholar 

  4. Rowat, A.C., Lammerding, J., Herrmann, H., and Aebi, U. (2008) Towards an integrated understanding of the structure and mechanics of the cell nucleus. Bioessays 30, 226-236

    Article  PubMed  Google Scholar 

  5. Dahl, K.N., Engler, A.J., Pajerowski, J.D., and Discher, D.E. (2005) Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys. J. 89, 2855-2864

    Article  PubMed  CAS  Google Scholar 

  6. Guilak, F., Tedrow, J.R., and Burgkart, R. (2000) Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269, 781-786

    Article  PubMed  CAS  Google Scholar 

  7. Rowat, A.C., Foster, L.J., Nielsen, M.M., Weiss, M., and Ipsen, J.H. (2005) Characterization of the elastic properties of the nuclear envelope. J. R. Soc. Interface 2, 63-69

    Article  PubMed  CAS  Google Scholar 

  8. Rowat, A.C., Lammerding, J., and Ipsen, J.H. (2006) Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys. J. 91, 1-16

    Article  Google Scholar 

  9. Moir, R.D., Yoon, M., Khuon, S., and Goldman, RMD. (2000) Nuclear lamins A and B1: dif-ferent pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol. 151, 1155-1168

    Article  PubMed  CAS  Google Scholar 

  10. Jackson, D.A., Yuan, J., and Cook, P.R. (1988) A gentle method for preparing cyto- and nucleo-skeletons and associated chromatin. J. Cell Sci. 90, 365-378

    PubMed  CAS  Google Scholar 

  11. Henriksen, J.R. and Ipsen, J.H. (2004) Measurement of membrane elasticity by micro-pipette aspiration. Eur. Phys. J. E Soft Matter 14, 149-167

    Article  PubMed  CAS  Google Scholar 

  12. Evans, E. and Needham, D. (1987) Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J. Phys. Chem. 91, 4219-4228

    Article  CAS  Google Scholar 

  13. Bojanowski, K. and Ingber, D.E. (1998) Ionic control of chromosome architecture in living and permeabilized cells. Exp. Cell Res. 244, 286-294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to J.H. Ipsen for critical discussions. Thanks also to D.K. Shumaker and R.D. Goldman, Northwestern University, Chicago, USA for generously providing the GFP-Lam A construct as well as to J.S. Andersen, Y.W. Lam, and J. Lammerding for helpful advice. This work was supported by the Danish National Research Foundation and a NSERC Julie Payette Scholarship (ACR). ACR is a Human Frontiers Science Program Cross-disciplinary fellow.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Rowat, A.C. (2008). Physical Properties of the Nucleus Studied by Micropipette Aspiration. In: Hancock, R. (eds) The Nucleus. Methods in Molecular Biology, vol 464. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-461-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-461-6_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-460-9

  • Online ISBN: 978-1-60327-461-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics