Skip to main content

Mouse Models of MMP and TIMP Function

  • Protocol
  • First Online:
Matrix Metalloproteinase Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 622))

Abstract

As their name implies, matrix metalloproteinases (MMPs) are thought to be responsible for the turnover of connective tissue proteins, a function that is indeed performed by some family members. However, matrix degradation is possibly not the predominant function of these enzymes. Several studies have demonstrated that MMPs also act on a variety of non-matrix extracellular proteins, such as cytokines, chemokines, receptors, junctional proteins, and antimicrobial peptides, to mediate a wide range of biological processes, such as repair, immunity, and angiogenesis. Our understanding of the many, diverse and, at times, unexpected functions of MMPs largely arose from the use of gene-targeted mice. In this chapter, we discuss the phenotypes of some MMP-deficient and TIMP-null mice and strategies and pitfalls in targeted mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez-Otin, C. and Overall, C. M. (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3, 509–519.

    Article  PubMed  CAS  Google Scholar 

  2. Mott, J. D. and Werb, Z. (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16, 558–564.

    Article  PubMed  CAS  Google Scholar 

  3. Parks, W. C., Wilson, C. L., and Lopez-Boado, Y. S. (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4, 617–629.

    Article  PubMed  CAS  Google Scholar 

  4. Agrawal, S. M., Lau, L., and Yong, V. W. (2008) MMPs in the central nervous system: where the good guys go bad. Semin Cell Dev Biol 19, 42–51.

    Article  PubMed  CAS  Google Scholar 

  5. Manicone, A. M. and McGuire, J. K. (2008) Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 19, 34–41.

    Article  PubMed  CAS  Google Scholar 

  6. Page-McCaw, A., Ewald, A. J., and Werb, Z. (2007) Matrix metalloproteinases and the regulation of tissue remodeling. Nat Rev Mol Cell Biol 8, 221-233.

    Article  PubMed  CAS  Google Scholar 

  7. Egeblad, M. and Werb, Z. (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161–174.

    Article  PubMed  CAS  Google Scholar 

  8. Van Lint, P. and Libert, C. (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82, 1375–1381.

    Article  PubMed  Google Scholar 

  9. Ra, H. J. and Parks, W. C. (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26, 587–596.

    Article  PubMed  CAS  Google Scholar 

  10. Massova, I., Kotra, L. P., Fridman, R., and Mobashery, S. (1998) Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 12, 1075–1095.

    PubMed  CAS  Google Scholar 

  11. Nagase, H., Visse, R., and Murphy, G. (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69, 562–573.

    Article  PubMed  CAS  Google Scholar 

  12. Maskos, K. and Bode, W. (2003) Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Mol Biotechnol 25, 241–266.

    Article  PubMed  CAS  Google Scholar 

  13. Gill, S. E. and Parks, W. C. (2008) Metalloproteinases and their inhibitors: Regulators of wound healing. Int J Biochem Cell Biol 40, 1334–1347.

    Article  PubMed  CAS  Google Scholar 

  14. Campbell, E. J., Campbell, M. A., Boukedes, S. S., and Owen, C. A. (1999) Quantum proteolysis by neutrophils: implications for pulmonary emphysema in alpha 1-antitrypsin deficiency. J Clin Invest 104, 337–344.

    Article  PubMed  CAS  Google Scholar 

  15. Baker, A. H., Edwards, D. R., and Murphy, G. (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115, 3719–3727.

    Article  PubMed  CAS  Google Scholar 

  16. Leco, K. J., Apte, S. S., Taniguchi, G. T., Hawkes, S. P., Khokha, R., Schultz, G. A., and Edwards, D. R. (1997) Murine tissue inhibitor of metalloproteinases-4 (Timp-4): cDNA isolation and expression in adult mouse tissues. FEBS Lett 401, 213–217.

    Article  PubMed  CAS  Google Scholar 

  17. Oh, J., Takahashi, R., Kondo, S., Mizoguchi, A., Adachi, E., Sasahara, R. M., Nishimura, S., Imamura, Y., Kitayama, H., Alexander, D. B., Ide, C., Horan, T. P., Arakawa, T., Yoshida, H., Nishikawa, S., Itoh, Y., Seiki, M., Itohara, S., Takahashi, C., and Noda, M. (2001) The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107, 789–800.

    Article  PubMed  CAS  Google Scholar 

  18. Kassim, S. Y., Fu, X., Liles, W. C., Shapiro, S. D., Parks, W. C., and Heinecke, J. W. (2005) NADPH oxidase restrains the matrix metalloproteinase activity of macrophages. J Biol Chem 280, 30201–30205.

    Article  PubMed  CAS  Google Scholar 

  19. Brew, K., Dinakarpandian, D., and Nagase, H. (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477, 267–283.

    Article  PubMed  CAS  Google Scholar 

  20. Yu, W. H., Yu, S., Meng, Q., Brew, K., and Woessner, J. F., Jr. (2000) TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem 275, 31226–31232.

    Article  PubMed  CAS  Google Scholar 

  21. Caterina, J. J., Yamada, S., Caterina, N. C., Longenecker, G., Holmback, K., Shi, J., Yermovsky, A. E., Engler, J. A., and Birkedal-Hansen, H. (2000) Inactivating mutation of the mouse tissue inhibitor of metalloproteinases-2(Timp-2) gene alters proMMP-2 activation. J Biol Chem 275, 26416–26422.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, Z., Juttermann, R., and Soloway, P. D. (2000) TIMP-2 is required for efficient activation of proMMP-2 in vivo. J Biol Chem 275, 26411–26415.

    Article  PubMed  CAS  Google Scholar 

  23. Seo, D. W., Li, H., Guedez, L., Wingfield, P. T., Diaz, T., Salloum, R., Wei, B. Y., and Stetler-Stevenson, W. G. (2003) TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 114, 171–180.

    Article  PubMed  CAS  Google Scholar 

  24. Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., Baker, A., and Anand-Apte, B. (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9, 407–415.

    Article  PubMed  CAS  Google Scholar 

  25. McQuibban, G. A., Gong, J. H., Tam, E. M., McCulloch, C. A., Clark-Lewis, I., and Overall, C. M. (2000) Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206.

    Article  PubMed  CAS  Google Scholar 

  26. auf dem Keller, U., Doucet, A., and Overall, C. M. (2007) Protease research in the era of systems biology. Biol Chem 388, 1159–1162.

    PubMed  CAS  Google Scholar 

  27. Holmbeck, K., Bianco, P., Caterina, J., Yamada, S., Kromer, M., Kuznetsov, S. A., Mankani, M., Robey, P. G., Poole, A. R., Pidoux, I., Ward, J. M., and Birkedal-Hansen, H. (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92.

    Article  PubMed  CAS  Google Scholar 

  28. Powell, W. C., Fingleton, B., Wilson, C. L., Boothby, M., and Matrisian, L. M. (1999) The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol 9, 1441–1447.

    Article  PubMed  CAS  Google Scholar 

  29. McCawley, L. J. and Matrisian, L. M. (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13, 534–540.

    Article  PubMed  CAS  Google Scholar 

  30. Folgueras, A. R., Pendas, A. M., Sanchez, L. M., and Lopez-Otin, C. (2004) Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 48, 411–424.

    Article  PubMed  CAS  Google Scholar 

  31. Janssens, S. and Lijnen, H. R. (2006) What has been learned about the cardiovascular effects of matrix metalloproteinases from mouse models? Cardiovasc Res 69, 585–594.

    Article  PubMed  CAS  Google Scholar 

  32. Hu, J., Van den Steen, P. E., Sang, Q. X., and Opdenakker, G. (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6, 480–498.

    Article  PubMed  CAS  Google Scholar 

  33. Greenlee, K. J., Werb, Z., and Kheradmand, F. (2007) Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev 87, 69–98.

    Article  PubMed  CAS  Google Scholar 

  34. Zeisberg, M., Khurana, M., Rao, V. H., Cosgrove, D., Rougier, J. P., Werner, M. C., Shield, C. F., 3rd, Werb, Z., and Kalluri, R. (2006) Stage-specific action of matrix metalloproteinases influences progressive hereditary kidney disease. PLoS Med 3, e100.

    Article  PubMed  Google Scholar 

  35. Rudolph-Owen, L. A., Hulboy, D. L., Wilson, C. L., Mudgett, J., and Matrisian, L. M. (1997) Coordinate expression of matrix metalloproteinase family members in the uterus of normal, matrilysin-deficient, and stromelysin-1-deficient mice. Endocrinology 138, 4902–4911.

    Article  PubMed  CAS  Google Scholar 

  36. Sahin, U., Weskamp, G., Kelly, K., Zhou, H. M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P., and Blobel, C. P. (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164, 769–779.

    Article  PubMed  CAS  Google Scholar 

  37. Coussens, L. M., Fingleton, B., and Matrisian, L. M. (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392.

    Article  PubMed  CAS  Google Scholar 

  38. Wilson, C. L., Heppner, K. J., Labosky, P. A., Hogan, B. L. M., and Matrisian, L. M. (1997) Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci U S A 94, 1402–1407.

    Article  PubMed  CAS  Google Scholar 

  39. Dunsmore, S. E., Saarialho-Kere, U. K., Roby, J. D., Wilson, C. L., Matrisian, L. M., Welgus, H. G., and Parks, W. C. (1998) Matrilysin expression and function in airway epithelium. J Clin Invest 102, 1321–1331.

    Article  PubMed  CAS  Google Scholar 

  40. McGuire, J. K., Li, Q., and Parks, W. C. (2003) Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol 162, 1831–1843.

    Article  PubMed  CAS  Google Scholar 

  41. Li, Q., Park, P. W., Wilson, C. L., and Parks, W. C. (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111, 635–646.

    Article  PubMed  CAS  Google Scholar 

  42. Swee, M., Wilson, C. L., Wang, Y., McGuire, J. K., and Parks, W. C. (2008) Matrilysin (MMP7) controls neutrophil egress and activation through generation of chemokine gradients. J Leuko Biol 83, 1402–1412.

    Google Scholar 

  43. Coussens, L. M., Tinkle, C. L., Hanahan, D., and Werb, Z. (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490.

    Article  PubMed  CAS  Google Scholar 

  44. Hotary, K., Allen, E., Punturieri, A., Yana, I., and Weiss, S. J. (2000) Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 149, 1309–1323.

    Article  PubMed  CAS  Google Scholar 

  45. Hotary, K. B., Allen, E. D., Brooks, P. C., Datta, N. S., Long, M. W., and Weiss, S. J. (2003) Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114, 33–45.

    Article  PubMed  CAS  Google Scholar 

  46. McCawley, L. J., Crawford, H. C., King, L. E., Jr., Mudgett, J., and Matrisian, L. M. (2004) A protective role for matrix metalloproteinase-3 in squamous cell carcinoma. Cancer Res 64, 6965–6972.

    Article  PubMed  CAS  Google Scholar 

  47. Balbin, M., Fueyo, A., Tester, A. M., Pendas, A. M., Pitiot, A. S., Astudillo, A., Overall, C. M., Shapiro, S. D., and Lopez-Otin, C. (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35, 252–257.

    Article  PubMed  CAS  Google Scholar 

  48. Yana, I., Sagara, H., Takaki, S., Takatsu, K., Nakamura, K., Nakao, K., Katsuki, M., Taniguchi, S., Aoki, T., Sato, H., Weiss, S. J., and Seiki, M. (2007) Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J Cell Sci 120, 1607–1614.

    Article  PubMed  CAS  Google Scholar 

  49. Zhou, H. E., Zhang, X., and Nothnick, W. B. (2004) Disruption of the TIMP-1 gene product is associated with accelerated endometrial gland formation during early postnatal uterine development. Biol Reprod 71, 534–539.

    Article  PubMed  CAS  Google Scholar 

  50. Olson, E. N., Arnold, H.-H., Rigby, P. W. J., and Wold, B. J. (1996) Know your neighbors. Three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85, 1–4.

    Article  PubMed  CAS  Google Scholar 

  51. Hayashi, S., Lewis, P., Pevny, L., and McMahon, A. P. (2002) Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev 119(Suppl 1), S97–S101.

    Article  PubMed  Google Scholar 

  52. Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21, 70–71.

    Article  PubMed  CAS  Google Scholar 

  53. Collins, F. S., Rossant, J., and Wurst, W. (2007) A mouse for all reasons. Cell 128, 9–13.

    Article  PubMed  CAS  Google Scholar 

  54. Cheng, J., Sauthoff, H., Huang, Y., Kutler, D. I., Bajwa, S., Rom, W. N., and Hay, J. G. (2007) Human matrix metalloproteinase-8 gene delivery increases the oncolytic activity of a replicating adenovirus. Mol Ther 15, 1982–1990.

    Article  PubMed  CAS  Google Scholar 

  55. Wilson, C. L., Ouellette, A. J., Satchell, D. P., Ayabe, T., Lopez-Boado, Y. S., Stratman, J. L., Hultgren, S. J., Matrisian, L. M., and Parks, W. C. (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117.

    Article  PubMed  CAS  Google Scholar 

  56. Lynch, C. C., Hikosaka, A., Acuff, H. B., Martin, M. D., Kawai, N., Singh, R. K., Vargo-Gogola, T. C., Begtrup, J. L., Peterson, T. E., Fingleton, B., Shirai, T., Matrisian, L. M., and Futakuchi, M. (2005) MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7, 485–496.

    Article  PubMed  CAS  Google Scholar 

  57. Haro, H., Crawford, H. C., Fingleton, B., Shinomiya, K., Spengler, D. M., and Matrisian, L. M. (2000) Matrix metalloproteinase-7-dependent release of tumor necrosis factor-alpha in a model of herniated disc resorption. J Clin Invest 105, 143–150.

    Article  PubMed  CAS  Google Scholar 

  58. Filippov, S., Caras, I., Murray, R., Matrisian, L. M., Chapman, H. A., Jr., Shapiro, S., and Weiss, S. J. (2003) Matrilysin-dependent elastolysis by human macrophages. J Exp Med 198, 925–935.

    Article  PubMed  CAS  Google Scholar 

  59. Sawey, E. T., Johnson, J. A., and Crawford, H. C. (2007) Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc Natl Acad Sci U S A 104, 19327–19332.

    Article  PubMed  CAS  Google Scholar 

  60. Grinnell, F., Zhu, M., and Parks, W. C. (1997) Collagenase-1 complexes with a2-macroglobulin in the acute and chronic wound environments. J Invest Dermatol 110, 771-776.

    Article  Google Scholar 

  61. Chen, P., Farivar, A. S., Mulligan, M. S., and Madtes, D. K. (2006) Tissue inhibitor of metalloproteinase-1 deficiency abrogates obliterative airway disease after heterotopic tracheal transplantation. Am J Respir Cell Mol Biol 34, 464–472.

    Article  PubMed  Google Scholar 

  62. Chen, P., McGuire, J., Kim, K.-H., Hackman, R., Chen, A., Parks, W., and Madtes, D. (2008) Tissue inhibitor of metalloproteinase-1 moderates airway re-epithelialization by regulating matrilysin activity. Am J Pathol 172, 1256–1270.

    Article  PubMed  CAS  Google Scholar 

  63. Mohammed, F. F., Pennington, C. J., Kassiri, Z., Rubin, J. S., Soloway, P. D., Ruther, U., Edwards, D. R., and Khokha, R. (2005) Metalloproteinase inhibitor TIMP-1 affects hepatocyte cell cycle via HGF activation in murine liver regeneration. Hepatology 41, 857–867.

    Article  PubMed  CAS  Google Scholar 

  64. Lijnen, H. R., Van Hoef, B., Vanlinthout, I., Verstreken, M., Rio, M. C., and Collen, D. (1999) Accelerated neointima formation after vascular injury in mice with stromelysin-3 (MMP-11) gene inactivation. Arterioscler Thromb Vasc Biol 19, 2863–2870.

    Article  PubMed  CAS  Google Scholar 

  65. Silence, J., Collen, D., and Lijnen, H. R. (2002) Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase-1 (TIMP-1) gene. Circ Res 90, 897–903.

    Article  PubMed  CAS  Google Scholar 

  66. Salonurmi, T., Parikka, M., Kontusaari, S., Pirila, E., Munaut, C., Salo, T., and Tryggvason, K. (2004) Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice. Cell Tissue Res 315, 27–37.

    Article  PubMed  CAS  Google Scholar 

  67. Leco, K. J., Waterhouse, P., Sanchez, O. H., Gowing, K. L., Poole, A. R., Wakeham, A., Mak, T. W., and Khokha, R. (2001) Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J Clin Invest 108, 817–829.

    PubMed  CAS  Google Scholar 

  68. Gill, S. E., Pape, M. C., Khokha, R., Watson, A. J., and Leco, K. J. (2003) A null mutation for tissue inhibitor of metalloproteinases-3 (Timp-3) impairs murine bronchiole branching morphogenesis. Dev Biol 261, 313–323.

    Article  PubMed  CAS  Google Scholar 

  69. Martin, E. L., Moyer, B. Z., Pape, M. C., Starcher, B., Leco, K. J., and Veldhuizen, R. A. (2003) Negative impact of tissue inhibitor of metalloproteinase-3 null mutation on lung structure and function in response to sepsis. Am J Physiol Lung Cell Mol Physiol 285, L1222–L1232.

    PubMed  CAS  Google Scholar 

  70. Kawamoto, H., Yasuda, O., Suzuki, T., Ozaki, T., Yotsui, T., Higuchi, M., Rakugi, H., Fukuo, K., Ogihara, T., and Maeda, N. (2006) Tissue inhibitor of metalloproteinase-3 plays important roles in the kidney following unilateral ureteral obstruction. Hypertens Res 29, 285–294.

    Article  PubMed  CAS  Google Scholar 

  71. Gill, S. E., Pape, M. C., and Leco, K. J. (2006) Tissue inhibitor of metalloproteinases 3 regulates extracellular matrix – cell signaling during bronchiole branching morphogenesis. Dev Biol 298, 540–554.

    Article  PubMed  CAS  Google Scholar 

  72. Fata, J. E., Leco, K. J., Voura, E. B., Yu, H. Y., Waterhouse, P., Murphy, G., Moorehead, R. A., and Khokha, R. (2001) Accelerated apoptosis in the Timp-3-deficient mammary gland. J Clin Invest 108, 831–841.

    PubMed  CAS  Google Scholar 

  73. Fedak, P. W., Smookler, D. S., Kassiri, Z., Ohno, N., Leco, K. J., Verma, S., Mickle, D. A., Watson, K. L., Hojilla, C. V., Cruz, W., Weisel, R. D., Li, R. K., and Khokha, R. (2004) TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation 110, 2401–2409.

    Article  PubMed  CAS  Google Scholar 

  74. Mohan, M. J., Seaton, T., Mitchell, J., Howe, A., Blackburn, K., Burkhart, W., Moyer, M., Patel, I., Waitt, G. M., Becherer, J. D., Moss, M. L., and Milla, M. E. (2002) The tumor necrosis factor-alpha converting enzyme (TACE): a unique metalloproteinase with highly defined substrate selectivity. Biochemistry 41, 9462–9469.

    Article  PubMed  CAS  Google Scholar 

  75. Mohammed, F. F., Smookler, D. S., Taylor, S. E., Fingleton, B., Kassiri, Z., Sanchez, O. H., English, J. L., Matrisian, L. M., Au, B., Yeh, W. C., and Khokha, R. (2004) Abnormal TNF activity in Timp3−/− mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet 36, 969–977.

    Article  PubMed  CAS  Google Scholar 

  76. English, J. L., Kassiri, Z., Koskivirta, I., Atkinson, S. J., Di Grappa, M., Soloway, P. D., Nagase, H., Vuorio, E., Murphy, G., and Khokha, R. (2006) Individual Timp deficiencies differentially impact pro-MMP-2 activation. J Biol Chem 281, 10337–10346.

    Article  PubMed  CAS  Google Scholar 

  77. Murphy, G., Knauper, V., Cowell, S., Hembry, R., Stanton, H., Butler, G., Freije, J., Pendas, A. M., and Lopez-Otin, C. (1999) Evaluation of some newer matrix metalloproteinases. Ann N Y Acad Sci 878, 25–39.

    Article  PubMed  CAS  Google Scholar 

  78. Aoki, T., Kataoka, H., Moriwaki, T., Nozaki, K., and Hashimoto, N. (2007) Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms. Stroke 38, 2337–2345.

    Article  PubMed  CAS  Google Scholar 

  79. Ruangpanit, N., Price, J. T., Holmbeck, K., Birkedal-Hansen, H., Guenzler, V., Huang, X., Chan, D., Bateman, J. F., and Thompson, E. W. (2002) MT1-MMP-dependent and -independent regulation of gelatinase a activation in long-term, ascorbate-treated fibroblast cultures: regulation by fibrillar collagen. Exp Cell Res 272, 109–118.

    Article  PubMed  CAS  Google Scholar 

  80. Corry, D. B., Rishi, K., Kanellis, J., Kiss, A., Song, L. Z., Xu, J., Feng, L., Werb, Z., and Kheradmand, F. (2002) Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol 3, 347–353.

    Article  PubMed  CAS  Google Scholar 

  81. Itoh, T., Matsuda, H., Tanioka, M., Kuwabara, K., Itohara, S., and Suzuki, R. (2002) The role of matrix metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced arthritis. J Immunol 169, 2643–2647.

    PubMed  CAS  Google Scholar 

  82. Kato, T., Kure, T., Chang, J. H., Gabison, E. E., Itoh, T., Itohara, S., and Azar, D. T. (2001) Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS Lett 508, 187–190.

    Article  PubMed  CAS  Google Scholar 

  83. Ohno-Matsui, K., Uetama, T., Yoshida, T., Hayano, M., Itoh, T., Morita, I., and Mochizuki, M. (2003) Reduced retinal angiogenesis in MMP-2-deficient mice. Invest Ophthalmol Vis Sci 44, 5370–5375.

    Article  PubMed  Google Scholar 

  84. Berglin, L., Sarman, S., van der Ploeg, I., Steen, B., Ming, Y., Itohara, S., Seregard, S., and Kvanta, A. (2003) Reduced choroidal neovascular membrane formation in matrix metalloproteinase-2-deficient mice. Invest Ophthalmol Vis Sci 44, 403–408.

    Article  PubMed  Google Scholar 

  85. Holmbeck, K., Bianco, P., Caterina, J., Yamada, S., Kromer, M., Kuznetsov, S. A., Mankani, M., Robey, P. G., Poole, A. R., Pidoux, I., Ward, J. M., and Birkedal-Hansen, H. (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92.

    Article  PubMed  CAS  Google Scholar 

  86. Holmbeck, K., Bianco, P., Chrysovergis, K., Yamada, S., and Birkedal-Hansen, H. (2003) MT1-MMP-dependent, apoptotic remodeling of unmineralized cartilage: a critical process in skeletal growth. J Cell Biol 163, 661–671.

    Article  PubMed  CAS  Google Scholar 

  87. Holmbeck, K., Bianco, P., Pidoux, I., Inoue, S., Billinghurst, R. C., Wu, W., Chrysovergis, K., Yamada, S., Birkedal-Hansen, H., and Poole, A. R. (2005) The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci 118, 147–156.

    Article  PubMed  CAS  Google Scholar 

  88. Zhou, Z., Apte, S. S., Soininen, R., Cao, R., Baaklini, G. Y., Rauser, R. W., Wang, J., Cao, Y., and Tryggvason, K. (2000) Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 97, 4052–4057.

    Article  PubMed  CAS  Google Scholar 

  89. Vaisar, T., Kassim, S. Y., Gomez, I. G., Green, P. S., Hargarten, S., Gough, P. J., Parks, W. C., Wilson, C. L., Raines, E. W., and Heinecke, J. W. 2009 MMP-9 sheds the β2 integrin subunit (CD18) from macrophages. Mol Cell Proteomics 8, 1044–1060.

    Google Scholar 

  90. Manicone, A. M., Birkland, T. P., Yang, Y., Betsuyaku, T., Lohi, J., Skerrett, S. J., and Parks, W. C. 2009 Epilysin (MMP-28) restrains early macrophage recruitment in Pseudomonas aeruginosa pneumonia. J Immunol 182, 3866–3876.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gill, S.E., Kassim, S.Y., Birkland, T.P., Parks, W.C. (2010). Mouse Models of MMP and TIMP Function. In: Clark, I. (eds) Matrix Metalloproteinase Protocols. Methods in Molecular Biology, vol 622. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-299-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-299-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-298-8

  • Online ISBN: 978-1-60327-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics