Skip to main content

Alternative Splicing as a Therapeutic Target for Human Diseases

  • Protocol
  • First Online:
Therapeutic Applications of RNAi

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 555))

Abstract

The majority of eukaryotic genes undergo alternative splicing, an evolutionarily conserved phenomenon, to generate functionally diverse protein isoforms from a single transcript. The fact that defective pre-mRNA splicing can generate non-functional and often toxic proteins with catastrophic effects, accurate removal of introns and joining of exons is vital for cell homeostasis. Thus, molecular tools that could either silence a disease-causing gene or regulate its expression in trans will find many therapeutic applications. Here we present two RNA-based approaches, namely RNAi and theophylline-responsive riboswitch that can regulate gene expression by loss-of-function and modulation of splicing, respectively. These strategies are likely to continue to play an integral role in studying gene function and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Black, D. L. (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336.

    Article  PubMed  CAS  Google Scholar 

  2. House, A. E. and Lynch, K. W. (2008) Regulation of alternative splicing: more than just the ABCs. J. Biol. Chem. 283, 1217–1221.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, Z. and Burge, C. B. (2008) Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813.

    Article  PubMed  CAS  Google Scholar 

  4. Mironov, A. A., Fickett, J. W. and Gelfand, M. S. (1999) Frequent alternative splicing of human genes. Genome Res. 9, 1288–1293.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson, J. M., et al. (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144.

    Article  PubMed  CAS  Google Scholar 

  6. Kan, Z., et al. (2001) Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res. 11, 889–900.

    Article  PubMed  CAS  Google Scholar 

  7. Garcia-Blanco, M. A. (2006) Alternative splicing: therapeutic target and tool. Prog. Mol. Subcell. Biol. 44, 47–64.

    Article  PubMed  CAS  Google Scholar 

  8. Faustino, N. A. and Cooper, T. A. (2003) Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437.

    Article  PubMed  CAS  Google Scholar 

  9. Benz, E. J., Jr. and Huang, S. C. (1997) Role of tissue specific alternative pre-mRNA splicing in the differentiation of the erythrocyte membrane. Trans. Am. Clin. Climatol. Assoc. 108, 78–95.

    PubMed  Google Scholar 

  10. Kurreck, J. (2006) siRNA Efficiency: Structure or sequence – that is the question. J. Biomed. Biotechnol. 2006, 83757.

    Article  PubMed  Google Scholar 

  11. Leuschner, P. J., et al. (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 7, 314–320.

    Article  PubMed  CAS  Google Scholar 

  12. Gaur, R. K. (2006) RNA interference: a potential therapeutic tool for silencing splice isoforms linked to human diseases. Biotechniques Suppl, 15–22.

    Article  PubMed  Google Scholar 

  13. Kim, D. S., et al. (2008) Ligand-induced sequestering of branchpoint sequence allows conditional control of splicing. BMC Mol. Biol. 9, 23.

    Article  PubMed  Google Scholar 

  14. Kim, D. S., et al. (2005) An artificial riboswitch for controlling pre-mRNA splicing. RNA 11, 1667–1677.

    Article  PubMed  CAS  Google Scholar 

  15. Kole, R., Vacek, M. and Williams, T. (2004) Modification of alternative splicing by antisense therapeutics. Oligonucleotides 14, 65–74.

    Article  PubMed  CAS  Google Scholar 

  16. Dominski, Z. and Kole, R. (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 90, 8673–8677.

    Article  PubMed  CAS  Google Scholar 

  17. Tucker, B. J. and Breaker, R. R. (2005) Riboswitches as versatile gene control elements. Curr. Opin. Struct. Bio. 15, 342–348.

    Article  CAS  Google Scholar 

  18. Nudler, E. and Mironov, A. S. (2004) The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29, 11–17.

    Article  PubMed  CAS  Google Scholar 

  19. Goguel, V., Wang, Y. and Rosbash, M. (1993) Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing. Mol. Cell. Biol. 13, 6841–6848.

    PubMed  CAS  Google Scholar 

  20. Gusti, V., Kim, D. S. and Gaur, R. K. (2008) Sequestering of the 3' splice site in a theophylline-responsive riboswitch allows ligand-dependent control of alternative splicing. Oligonucleotides 18, 93–99.

    Article  PubMed  CAS  Google Scholar 

  21. Dignam, J. D., Lebovitz, R. M. and Roeder, R. G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489.

    Article  PubMed  CAS  Google Scholar 

  22. Fischer, D. C., et al. (2004) Expression of splicing factors in human ovarian cancer. Oncol. Rep. 11, 1085–1090.

    PubMed  CAS  Google Scholar 

  23. Ghigna, C., et al. (2005) Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol. Cell 20, 881–890.

    Article  PubMed  CAS  Google Scholar 

  24. He, X., et al. (2004) Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20. Clin. Cancer Res. 10, 4652–4660.

    Article  PubMed  CAS  Google Scholar 

  25. Karni, R., et al. (2007) The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193.

    Article  PubMed  CAS  Google Scholar 

  26. Zhu, H., et al. (2005) Enhancing TRAIL-induced apoptosis by Bcl-X(L) siRNA. Cancer Biol. Ther. 4, 393–397.

    Article  PubMed  CAS  Google Scholar 

  27. Chevinsky, A. H. (1991) CEA in tumors of other than colorectal origin. Semin. Surg. Oncol. 7, 162–166.

    Article  PubMed  CAS  Google Scholar 

  28. Hammarstrom, S. (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9, 67–81.

    Article  PubMed  CAS  Google Scholar 

  29. Li, W. and Cha, L. (2007) Predicting siRNA efficiency. Cell. Mol. Life Sci. 64, 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  30. Yiu, S.M., et al. (2005) Filtering of ineffective siRNAs and improved siRNA design tool. Bioinformatics 21, 144–151.

    Article  PubMed  CAS  Google Scholar 

  31. Patzel, V., et al. (2005) Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency. Nat. Biotechnol. 23, 1440–1444.

    Article  PubMed  CAS  Google Scholar 

  32. Huesken, D., et al. (2005) Design of a genome-wide siRNA library using an artificial neural network. Nat. Biotechnol. 23, 995–1001.

    Article  PubMed  CAS  Google Scholar 

  33. Tuschl, T. (2004) Targeting genes expressed in mammalian cells using siRNAs. Nat. Methods X, 13–17.

    Google Scholar 

  34. Reynolds, A., et al. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330.

    Article  PubMed  CAS  Google Scholar 

  35. Daoud, R., et al. (1999) Activity-dependent regulation of alternative splicing patterns in the rat brain. Eur. J. Neurosci. 11, 788–802.

    Article  PubMed  CAS  Google Scholar 

  36. Venables, J. P. (2004) Aberrant and alternative splicing in cancer. Cancer Res. 64, 7647–7654.

    Article  PubMed  CAS  Google Scholar 

  37. Tazi, J., Durand, S. and Jeanteur, P. (2005) The spliceosome: a novel multi-faceted target for therapy. Trends Biochem. Sci. 30, 469–478.

    Article  PubMed  CAS  Google Scholar 

  38. Jenison, R. D., et al. (1994) High-resolution molecular discrimination by RNA. Science 263, 1425–1429.

    Article  PubMed  CAS  Google Scholar 

  39. Mayeda, A. and Krainer, A. R. (1999) Mammalian in vitro splicing assays. Methods Mol. Biol. 118, 315–321.

    PubMed  CAS  Google Scholar 

  40. Ge, L. and Rudolph, P. (1997) Simultaneous introduction of multiple mutations using overlap extension PCR. Biotechniques 22, 28–30.

    PubMed  CAS  Google Scholar 

  41. Visitsunthorn, N., Udomittipong, K. and Punnakan, L. (2001) Theophylline toxicity in Thai children. Asian Pac. J. Allergy Immunol. 19, 177–182.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Gaur laboratory for helpful discussions; Marieta Gencheva for valuable suggestions; and Faith Osep for administrative assistance. This work was supported in part by a Department of Defense (DOD; CDMRP) grant to RKG (BC023235), Beckman Research Institute excellence award to RKG, and NIH grant (CA 84202) to JES.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dery, K.J., Gusti, V., Gaur, S., Shively, J.E., Yen, Y., Gaur, R.K. (2009). Alternative Splicing as a Therapeutic Target for Human Diseases. In: Rondinone, C., Reidhaar-Olson, J. (eds) Therapeutic Applications of RNAi. Methods in Molecular Biology™, vol 555. Humana Press. https://doi.org/10.1007/978-1-60327-295-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-295-7_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-294-0

  • Online ISBN: 978-1-60327-295-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics