Skip to main content

Implementing the Modular MHC Model for Predicting Peptide Binding

  • Protocol
Immunoinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 409))

Summary

The challenge of predicting which peptide sequences bind to which major histocompatibility complex (MHC) molecules has been met with various computational techniques. Scoring matrices, hidden Markov models, and artificial neural networks are examples of algorithms that have been successful in MHC–peptide-binding prediction. Because these algorithms are based on a limited amount of experimental peptide-binding data, prediction is only possible for a small fraction of the thousands of known MHC proteins. In the primary field of application for such algorithms—vaccine design—the ability to make predictions for the most frequent MHC alleles may be sufficient. However, emerging applications of leukemia-specific T cells require a patient-specific MHC–peptide-binding prediction. The modular model of MHC presented here is an attempt to maximize the number of predictable MHC alleles, based on a limited pool of experimentally determined peptide-binding data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marsh, S. G., Parham, P. & Barber, L. D. (2000). The HLA FactsBook. Academic Press, London.

    Google Scholar 

  2. Robinson, J., Waller, M. J., Parham, P., de Groot, N., Bontrop, R., Kennedy, L. J., Stoehr, P. & Marsh, S. G. (2003). IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 31, 311–4.

    Article  CAS  PubMed  Google Scholar 

  3. Kotsch, K. & Blasczyk, R. (2000). The noncoding regions of HLA-DRB uncover interlineage recombinations as a mechanism of HLA diversification. J Immunol165, 5664–70.

    CAS  PubMed  Google Scholar 

  4. Bade-Doeding, C., Eiz-Vesper, B., Figueiredo, C., Seltsam, A., Elsner, H. A. & Blasczyk, R. (2005). Peptide-binding motif of HLA- A*6603 . Immunogenetics56, 769–72.

    Article  CAS  PubMed  Google Scholar 

  5. DeLuca, D. S., Khattab, B. & Blasczyk, R. (2007). A modular concept of HLA for comprehensive peptide binding prediction. Immunogenetics59, 25–35.

    Article  CAS  PubMed  Google Scholar 

  6. Saper, M. A., Bjorkman, P. J. & Wiley, D. C. (1991). Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol219, 277–319.

    Article  CAS  PubMed  Google Scholar 

  7. Chelvanayagam, G. (1996). A roadmap for HLA-A, HLA-B, and HLA-C peptide binding specificities. Immunogenetics45, 15–26.

    Article  CAS  PubMed  Google Scholar 

  8. Reche, P. A. & Reinherz, E. L. (2003). Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol331, 623–41.

    Article  CAS  PubMed  Google Scholar 

  9. Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanovic, S. (1999). SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics50, 213–9.

    Article  CAS  PubMed  Google Scholar 

  10. Bhasin, M., Singh, H. & Raghava, G. P. (2003). MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics19, 665–6.

    Article  CAS  PubMed  Google Scholar 

  11. Blythe, I. A. D., & Flower, D. R. (2001). JenPep: a database of quantitative functional peptide data for immunology. Bioinformatics18, 434–9.

    Article  Google Scholar 

  12. Yewdell, J. W. & Bennink, J. R. (1999). Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol17, 51–88.

    Article  CAS  PubMed  Google Scholar 

  13. Reche, P. A., Glutting, J. P., Zhang, H. & Reinherz, E. L. (2004). Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics56, 405–19.

    Article  CAS  PubMed  Google Scholar 

  14. Donnes, P. & Elofsson, A. (2002). Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics3, 25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

DeLuca, D.S., Blasczyk, R. (2007). Implementing the Modular MHC Model for Predicting Peptide Binding. In: Flower, D.R. (eds) Immunoinformatics. Methods in Molecular Biology™, vol 409. Humana Press. https://doi.org/10.1007/978-1-60327-118-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-118-9_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-699-3

  • Online ISBN: 978-1-60327-118-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics