Skip to main content

Advertisement

Log in

A modular concept of HLA for comprehensive peptide binding prediction

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

A variety of algorithms have been successful in predicting human leukocyte antigen (HLA)-peptide binding for HLA variants for which plentiful experimental binding data exist. Although predicting binding for only the most common HLA variants may provide sufficient population coverage for vaccine design, successful prediction for as many HLA variants as possible is necessary to understand the immune response in transplantation and immunotherapy. However, the high cost of obtaining peptide binding data limits the acquisition of binding data. Therefore, a prediction algorithm, which applies the binding information from well-studied HLA variants to HLA variants, for which no peptide data exist, is necessary. To this end, a modular concept of class I HLA-peptide binding prediction was developed. Accurate predictions were made for several alleles without using experimental peptide binding data specific to those alleles. We include a comparison of module-based prediction and supertype-based prediction. The modular concept increased the number of predictable alleles from 15 to 75 of HLA-A and 12 to 36 of HLA-B proteins. Under the modular concept, binding data of certain HLA alleles can make prediction possible for numerous additional alleles. We report here a ranking of HLA alleles, which have been identified to be the most informative. Modular peptide binding prediction is freely available to researchers on the web at http://www.peptidecheck.org.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MHCBN:

major histocompatibility complex binding database

A ROC :

area under the receiver operating characteristic curve

SE:

sensitivity

SP:

specificity

TP:

true positive

TN:

true negative

FP:

false positive

FN:

false negative

P1, P2, ..., P9:

portions of the HLA binding groove responsible for binding positions 1, 2, ..., 9 of the peptide

References

  • Bade-Doeding C, Elsner HA, Eiz-Vesper B, Seltsam A, Holtkamp U, Blasczyk R (2004) A single amino-acid polymorphism in pocket A of HLA-A*6602 alters the auxiliary anchors compared with HLA-A*6601 ligands. Immunogenetics 56:83–88

    Article  PubMed  CAS  Google Scholar 

  • Bade-Doeding C, Eiz-Vesper B, Figueiredo C, Seltsam A, Elsner HA, Blasczyk R (2005) Peptide-binding motif of HLA-A*6603. Immunogenetics 56:769–72

    Article  PubMed  CAS  Google Scholar 

  • Bhasin M, Raghava GP (2004) Analysis and prediction of affinity of TAP binding peptides using cascade SVM. Protein Sci 13:596–607

    Article  PubMed  CAS  Google Scholar 

  • Bhasin M, Singh H, Raghava GP (2003) MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19:665–666

    Article  PubMed  CAS  Google Scholar 

  • Buus S, Lauemoller SL, Worning P, Kesmir C, Frimurer T, Corbet S, Fomsgaard A, Hilden J, Holm A, Brunak S (2003) Sensitive quantitative predictions of peptide-MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue Antigens 62:378–384

    Article  PubMed  CAS  Google Scholar 

  • Chelvanayagam G (1996) A roadmap for HLA-A HLA-B and HLA-C peptide binding specificities. Immunogenetics 45:15–26

    Article  PubMed  CAS  Google Scholar 

  • Davies MN, Sansom CE, Beazley C, Moss DS (2003) A novel predictive technique for the MHC class II peptide-binding interaction. Mol Med 9:220–225

    PubMed  CAS  Google Scholar 

  • Donnes P, Elofsson A (2002) Prediction of MHC class I binding peptides using SVMHC. BMC Bioinformatics 3:25

    Article  PubMed  Google Scholar 

  • Donnes P, Kohlbacher O (2005) Integrated modeling of the major events in the MHC class I antigen processing pathway. Protein Sci 14:2132–2140

    Article  PubMed  CAS  Google Scholar 

  • Doytchinova IA, Flower DR (2006) Class I T-cell epitope prediction: improvements using a combination of proteasome cleavage TAP affinity and MHC binding. Mol Immunol 43:2037–2044

    Article  PubMed  CAS  Google Scholar 

  • Gotch F, McMichael A, Rothbard J (1988) Recognition of influenza A matrix protein by HLA-A2-restricted cytotoxic T lymphocytes. Use of analogues to orientate the matrix peptide in the HLA-A2 binding site. J Exp Med 168:2045–2057

    Article  PubMed  CAS  Google Scholar 

  • Goulmy E, Schipper R, Pool J, Blokland E, Falkenburg JH, Vossen J, Gratwohl A, Vogelsang GB, van Houwelingen HC, van Rood JJ (1996) Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med 334:281–285

    Article  PubMed  CAS  Google Scholar 

  • Guan P, Hattotuwagama CK, Doytchinova IA, Flower DR (2006) MHCPred 2.0: an updated quantitative T-cell epitope prediction server. Appl Bioinformatics 5:55–61

    Article  PubMed  CAS  Google Scholar 

  • Hambach L, Goulmy E (2005) Immunotherapy of cancer through targeting of minor histocompatibility antigens. Curr Opin Immunol 17:202–210

    Article  PubMed  CAS  Google Scholar 

  • Kotsch K, Blasczyk R (2000) The noncoding regions of HLA-DRB uncover interlineage recombinations as a mechanism of HLA diversification. J Immunol 165:5664–5670

    PubMed  CAS  Google Scholar 

  • Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, Nielsen M (2005) An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding TAP transport efficiency and proteasomal cleavage predictions. Eur J Immunol 35:2295–2303

    Article  PubMed  CAS  Google Scholar 

  • Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007–1017

    Article  PubMed  CAS  Google Scholar 

  • Noguchi H, Kato R, Hanai T, Matsubara Y, Honda H, Brusic V, Kobayashi T (2002) Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. J Biosci Bioeng 94:264–270

    Article  PubMed  CAS  Google Scholar 

  • Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–75

    PubMed  CAS  Google Scholar 

  • Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    Article  PubMed  CAS  Google Scholar 

  • Reche PA, Reinherz EL (2003) Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331:623–641

    Article  PubMed  CAS  Google Scholar 

  • Reche PA, Glutting JP, Zhang H, Reinherz EL (2004) Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56:405–419

    Article  PubMed  CAS  Google Scholar 

  • Robinson J, Waller MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ, Stoehr P, Marsh SG (2003) IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 31:311–314

    Article  PubMed  CAS  Google Scholar 

  • Rognan D, Scapozza L, Folkers G, Daser A (1994) Molecular dynamics simulation of MHC–peptide complexes as a tool for predicting potential T cell epitopes. Biochemistry 33:11476–11486

    Article  PubMed  CAS  Google Scholar 

  • Rothbard JB (1992) Synthetic peptides as vaccines. Biotechnology 20:451–465

    PubMed  CAS  Google Scholar 

  • Sette A, Sidney J (1999) Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50:201–212

    Article  PubMed  CAS  Google Scholar 

  • Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, Braxenthaler M, Gallazzi F, Protti MP, Sinigaglia F, Hammer J (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17:555–561

    Article  PubMed  CAS  Google Scholar 

  • Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz MM, Kloetzel PM, Rammensee HG, Schild H, Holzhutter HG (2005) Modeling the MHC class I pathway by combining predictions of proteasomal cleavage TAP transport and MHC class I binding. Cell Mol Life Sci 62:1025–1037

    Article  PubMed  CAS  Google Scholar 

  • Yanover C, Hertz T (2005) Predicting protein–peptide binding affinity by learning peptide–peptide distance functions. Lect Notes Comput Sci 3500:456–471

    Article  CAS  Google Scholar 

  • Yewdell JW, Bennink JR (1999) Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 17:51–88

    Article  PubMed  CAS  Google Scholar 

  • Zhang GL, Petrovsky N, Kwoh CK, August JT, Brusic V (2006) PREDTAP: a system for prediction of peptide binding to the human transporter associated with antigen processing. Immunome Res 2:3

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Udaka K, Sidney J, Sette A, Aoki-Kinoshita KF, Mamitsuka H (2006) Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules. Bioinformatics 22:1648–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The MHCBN database was kindly and conveniently provided by GPS Raghava and Manoj Bhasin of the Institute of Microbial Technology, Chandigarh, India. The NetMHC algorithm and technical support were provided by Søren Brunak and Claus Lundegaard of the Center for Biological Sequence Analysis, BioCentrum-DTU, Denmark. The authors are very grateful to Peter Horn of the Institute for Transfusion Medicine at Hanover Medical School for bringing important perspectives to the analysis of these results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Blasczyk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental figure

Shannon’s entropy is a measure variance in a system, and is applied here to the positions in-cluded in HLA pocket definitions. Average entropy was determined by calculating the en-tropy for each position in the pocket definition, and dividing by the number of positions in the pocket definition. Num. High Entropy Positions refers to the number of positions in the pocket definition that had entropy above the threshold of 2.4. Entropy values above 2.0 are considered variable (Reche et al. 2004) (PDF 105 kb)

Supplementary Table 1

Ranking of the alleles which would provide the most new module data (PDF 69 kb)

Supplementary Table 2

Ranking of the alleles which would provide the most new anchor module data (PDF 24 kb)

Supplementary Table 3

Ranking of the alleles which would enable the prediction of the most (PDF 24 kb)

Supplementary Table 4

Peptide sequences derived from random positions in a random selection of human proteins (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLuca, D.S., Khattab, B. & Blasczyk, R. A modular concept of HLA for comprehensive peptide binding prediction. Immunogenetics 59, 25–35 (2007). https://doi.org/10.1007/s00251-006-0176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0176-4

Keywords

Navigation