Skip to main content

Prediction of Protein Disorder

  • Protocol
Structural Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 426))

The recent advance in our understanding of the relation of protein structure and function cautions that many proteins, or regions of proteins, exist and function without a well-defined three-dimensional structure. These intrinsically disordered/unstructured proteins (IDP/IUP) are frequent in proteomes and carry out essential functions, but their lack of stable structures hampers efforts of solving structures at high resolution by x-ray crystallography and/or NMR. Thus, filtering such proteins/regions out of high-throughput structural genom-ics pipelines would be of significant benefit in terms of cost and success rate. This chapter outlines the theoretical background of structural disorder, and provides practical advice on the application of advanced bioinformatic predictors to this end, that is to recognize fully/mostly disordered proteins or regions, which are incompatible with structure determination. An emphasis is also given to a somewhat different approach, in which ordered/disordered regions are explicitly delineated to the end of making constructs amenable for structure determination even when disordered regions are present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tompa, P. (2002) Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533.

    Article  CAS  PubMed  Google Scholar 

  2. Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M., and Obradovic, Z. (2002) Intrinsic disorder and protein function. Biochemistry 41, 6573–6582.

    Article  CAS  PubMed  Google Scholar 

  3. Tompa, P. (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 579, 3346–3354.

    Article  CAS  PubMed  Google Scholar 

  4. Dyson, H. J., and Wright, P. E. (2005) Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208.

    Article  CAS  PubMed  Google Scholar 

  5. Dunker, A. K., Obradovic, Z., Romero, P., Garner, E. C., and Brown, C. J. (2000) Intrinsic protein disorder in complete genomes. Genome Inform. Ser. Workshop Genome Inform. 11, 161–171.

    CAS  PubMed  Google Scholar 

  6. Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F., and Jones, D. T. (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635–645.

    Article  CAS  PubMed  Google Scholar 

  7. Tompa, P., Dosztányi, Z. and Simon, I. (2006) Prevalent structural disorder in E. coli and S. cerevisiae proteomes. J. Proteome. Res. 5, 1996–2000.

    Article  CAS  PubMed  Google Scholar 

  8. Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., and Russell, R. B. (2003) Protein disorder prediction: implications for structural proteomics. Structure. 11, 1453–1459.

    Article  CAS  PubMed  Google Scholar 

  9. Oldfield, C. J., Ulrich, E. L., Cheng, Y., Dunker, A. K., and Markley, J. L. (2005) Addressing the intrinsic disorder bottleneck in structural proteomics. Proteins. 59, 444–453.

    Article  CAS  PubMed  Google Scholar 

  10. Oldfield, C. J., Cheng, Y., Cortese, M. S., Brown, C. J., Uversky, V. N., and Dunker, A. K. (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry. 44, 1989–2000.

    Article  CAS  PubMed  Google Scholar 

  11. Receveur-Brechot, V., Bourhis, J. M., Uversky, V. N., Canard, B., and Longhi, S. (2005) Assessing protein disorder and induced folding. Proteins 62, 24–45.

    Article  Google Scholar 

  12. Cortese, M. S., Baird, J. P., Uversky, V. N., and Dunker, A. K. (2005) Uncovering the unfoldome: enriching cell extracts for unstructured proteins by acid treatment. J. Proteome Res. 4, 1610–1618.

    Article  CAS  PubMed  Google Scholar 

  13. Csizmok, V., Szollosi, E., Friedrich, P. and Tompa, P. (2006) A novel two-dimensional electrophoresis technique for the identification of intrinsically unstructured proteins. Mol. Cell. Proteomics 5, 265–273.

    CAS  PubMed  Google Scholar 

  14. Sickmeier, M., Hamilton, J. A., LeGall, T., Vacic, V., Cortese, M. S., Tantos, A., Szabo, B., Tompa, P., Chen, J., Uversky, V. N., Obradovic, Z. and Dunker, A. K. (2007) DisProt: the Database of Disordered Proteins. Nucl. Acids Res. 35, D786– D793.

    Article  CAS  PubMed  Google Scholar 

  15. Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K., and Obradovic, Z. (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7, 208.

    Article  PubMed  Google Scholar 

  16. Xie, Q., Arnold, G. E., Romero, P., Obradovic, Z., Garner, E., and Dunker, A. K. (1998) The sequence attribute method for determining relationships between sequence and protein disorder. Genome Inform. Ser. Workshop Genome Inform. 9, 193–200.

    CAS  PubMed  Google Scholar 

  17. Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., and Dunker, A. K. (2005) Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins. 61, 176–182.

    Article  CAS  PubMed  Google Scholar 

  18. Uversky, V. N., Gillespie, J. R., and Fink, A. L. (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins. 41, 415–427.

    Article  CAS  PubMed  Google Scholar 

  19. Dosztányi, Z., Csizmok, V., Tompa, P., and Simon, I. (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J. Mol. Biol. 347, 827–839.

    Article  PubMed  Google Scholar 

  20. Garbuzynskiy, S. O., Lobanov, M. Y., and Galzitskaya, O. V. (2004) To be folded or to be unfolded? Protein Sci. 13, 2871–2877.

    Article  CAS  PubMed  Google Scholar 

  21. Coeytaux, K., and Poupon, A. (2005) Prediction of unfolded segments in a protein sequence based on amino acid composition. Bioinformatics. 21, 1891–1900.

    Article  CAS  PubMed  Google Scholar 

  22. Jin, Y., and Dunbrack, R. L. Jr., (2005) Assessment of disorder predictions in CASP6. Proteins 61, 167–175.

    Article  CAS  PubMed  Google Scholar 

  23. Dosztányi, Z., Csizmok, V., Tompa, P., and Simon, I. (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434.

    Article  PubMed  Google Scholar 

  24. Wootton, J. C. (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Computers Chem. 18, 269–285.

    Article  CAS  Google Scholar 

  25. Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., and Dunker, A. K. (2001) Sequence complexity of disordered protein. Proteins 42, 38–48.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, J., and Rost, B. (2003) NORSp: predictions of long regions without regular secondary structure. Nucleic Acids Res. 31, 3833–3835.

    Article  CAS  PubMed  Google Scholar 

  27. Fuxreiter, M., Simon, I., Friedrich, P., and Tompa, P. (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J. Mol. Biol. 338, 1015–1026.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, J., Tan, H., and Rost, B. (2002) Loopy proteins appear conserved in evolution. J. Mol. Biol. 322, 53–64.

    Article  CAS  PubMed  Google Scholar 

  29. Radivojac, P., Obradovic, Z., Smith, D. K., Zhu, G., Vucetic, S., Brown, C. J., Lawson, J. D., and Dunker, A. K. (2004) Protein flexibility and intrinsic disorder. Protein Sci. 13, 71–80.

    Article  CAS  PubMed  Google Scholar 

  30. Finn, R. D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., et al. (2006) Pfam: clans, web tools and services. Nucleic Acids Res. 34, D247–251.

    Article  CAS  PubMed  Google Scholar 

  31. Csizmok, V., Bokor, M., Banki, P., Klement, É., Medzihradszky, K. F., Friedrich, P., Tompa, K., and Tompa, P. (2005) Primary contact sites in intrinsically unstructured proteins: the case of calpastatin and microtubule-associated protein 2. Biochemistry 44, 3955–3964.

    Article  CAS  PubMed  Google Scholar 

  32. Oldfield, C. J., Cheng, Y., Cortese, M. S., Romero, P., Uversky, V. N., and Dunker, A. K. (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44, 12454–12470.

    Article  CAS  PubMed  Google Scholar 

  33. Dawson, R., Muller, L., Dehner, A., Klein, C., Kessler, H., and Buchner, J. (2003) The N-terminal domain of p53 is natively unfolded. J. Mol. Biol. 332, 1131– 1141.

    Article  CAS  PubMed  Google Scholar 

  34. Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., and Pavletich, N. P. (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953.

    Article  CAS  PubMed  Google Scholar 

  35. Linding, R., Russell, R. B., Neduva, V., and Gibson, T. J. (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucl. Acids Res. 31, 3701–3708.

    Article  CAS  PubMed  Google Scholar 

  36. Koonin, E. V., and Galperin, M. (2003) Sequence-Evolution-Function: Computational Approaches in Comparative Genomics. Kluwer Academic Publishers, New York.

    Google Scholar 

  37. Ferron, F., Longhi, S., Canard, B. and Karlin, D. (2006) A practical overview of protein disorder prediction methods. Proteins 65, 1–14.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng, J., Sweredoski, M., and Baldi, P. (2005) Accurate prediction of protein disordered regions by mining protein structure data. Data Mining Knowledge Discovery 11, 213–222.

    Article  Google Scholar 

  39. Vullo, A., Bortolami, O., Pollastri, G., and Tosatto, S. C. (2006) Spritz: a server for the prediction of intrinsically disordered regions in protein sequences using kernel machines. Nucl. Acids Res. 34, W164–168.

    Article  CAS  PubMed  Google Scholar 

  40. Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann, J. S., Silman, I., and Sussman, J. L. (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21, 3435–3438.

    Article  CAS  PubMed  Google Scholar 

  41. Yang, Z. R., Thomson, R., McNeil, P. and Esnouf, R. M. (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21, 3369–3376.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants GVOP-3.2.1.-2004-05-0195/3.0, Hungarian Scientific Research Fund (OTKA) F043609, T049073, K60694, NKFP MediChem2, and the Wellcome Trust International Senior Research Fellowship ISRF 067595. We also acknowledge the Bolyai János fellowships for Z.D. and P.T.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dosztányi, Z., Tompa, P. (2008). Prediction of Protein Disorder. In: Kobe, B., Guss, M., Huber, T. (eds) Structural Proteomics. Methods in Molecular Biology™, vol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-058-8_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-809-6

  • Online ISBN: 978-1-60327-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics