Skip to main content

Automated Structure Solution with the PHENIX Suite

  • Protocol
Structural Proteomics

Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution, and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution, and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template- and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix. refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Page, R., Grzechnik, S. K., Canaves, J. M., Spraggon, G., Kreusch, A., Kuhn, P., Stevens, R. C., and Lesley, S. A. (2003) Shotgun crystallization strategy for structural genomics: an optimized two-tiered crystallization screen against the Thermotoga maritima proteome. Acta Cryst. D59, 1028–1037.

    CAS  Google Scholar 

  2. Snell, G., Cork, C., Nordmeyer, R., Cornell, E., Meigs, G., Yegian, D., Jaklevic, J., Jin, J., Stevens, R. C., and Earnest, T. (2004) Automated sample mounting and alignment system for biological crystallography at a synchrotron source. Structure 12, 537–545.

    Article  CAS  PubMed  Google Scholar 

  3. Adams, P. D., Grosse-Kunstleve, R. W., and Brunger, A. T. (2003) Computational aspects of high throughput crystallographic macromolecular structure determination. Methods Biochem. Anal. 44, 75–87.

    CAS  PubMed  Google Scholar 

  4. Terwilliger, T. C., and Berendzen, J. (1999) Automated MAD and MIR structure solution. Acta Cryst. D55, 849–861.

    CAS  Google Scholar 

  5. de la Fortelle, E., and Bricogne, G. (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Meth. Enzymol. 276, 472–494.

    Article  Google Scholar 

  6. Brunzelle, J. S., Shafaee, P., Yang, X., Weigand, S., Ren, Z., and Anderson, W. F. (2003) Automated crystallographic system for high throughput protein structure determination. Acta Cryst. D59, 1138–1144.

    CAS  Google Scholar 

  7. Schneider, T. R., and Sheldrick, G. M. (2002) Substructure solution with SHELXD. Acta Cryst. D58, 1772–1779.

    CAS  Google Scholar 

  8. Ness, S. R., de Graaff, R. A., Abrahams, J. P., and Pannu, N. S. (2004) CRANK: new methods for automated macromolecular crystal structure solution. Structure 12, 1753–1761.

    Article  CAS  PubMed  Google Scholar 

  9. Holton, J., and Alber, T. (2004) Automated protein crystal structure determination using ELVES. Proc. Natl. Acad. Sci. USA 101, 1537–1542.

    Article  CAS  PubMed  Google Scholar 

  10. Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S., and Tucker, P. A. (2005) Auto-Rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Cryst. D61, 449–457.

    CAS  Google Scholar 

  11. http://www.hwi.buffalo.edu/BnP/

  12. Navaza, J. (1994) AMoRe: an automated package for molecular replacement. Acta Cryst. A50, 157–163.

    CAS  Google Scholar 

  13. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C., and Read, R. J. (2005) Likelihood-enhanced fast translation functions. Acta Cryst. D61, 458–464.

    CAS  Google Scholar 

  14. Kissinger, C. R., Gehlhaar, D. K., and Fogel, D. B. (1999) Rapid automated molecular replacement by evolutionary search. Acta Cryst. D55, 484–491.

    CAS  Google Scholar 

  15. Vagin, A., and Teplyakov, A. (2000) An approach to multi-copy search in molecular replacement. Acta Cryst. A56, 1622–1624.

    Google Scholar 

  16. Perrakis, A., Morris, R., and Lamzin, V. S. (1999) Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463.

    Article  CAS  PubMed  Google Scholar 

  17. Terwilliger, T. C. (2003) Automated main-chain model building by template matching and iterative fragment extension. Acta Cryst. D59, 38–44.

    CAS  Google Scholar 

  18. Terwilliger, T. C. (2003) Automated side-chain model building and sequence assignment by template matching. Acta Cryst. D59, 45–49.

    CAS  Google Scholar 

  19. Holton, T., Ioerger, T. R., Christopher, J. A., and Sacchettini, J. C. (2000) Determining protein structure from electron-density maps using pattern matching. Acta Cryst. D56, 722–734.

    CAS  Google Scholar 

  20. Levitt, D. G. (2001) A new software routine that automates the fitting of protein X-ray crystallographic electron-density maps. Acta Cryst. D57, 1013–1019.

    CAS  Google Scholar 

  21. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110–119.

    CAS  Google Scholar 

  22. McRee, D. E. (1999) XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165.

    Article  CAS  PubMed  Google Scholar 

  23. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Cryst. D60, 2126–2132.

    CAS  Google Scholar 

  24. Turk, D. (1992) Weiterentwicklung eines Programms fuer Molekuelgraphik und Elektrondichte-Manipulation und seine Anwendung auf verschiedene Protein-Strukturaufklaerungen. Technical University of Munich, Munich.

    Google Scholar 

  25. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L.-W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K., and Terwilliger, T. C. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Cryst. D58, 1948–1954.

    CAS  Google Scholar 

  26. Adams, P. D., Gopal, K., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Pai, R. K., Read, R. J., and Romo, T. D., et al. (2004) Recent developments in the PHENIX software for automated crystallo-graphic structure determination. J. Synchrotron Radiat. 11, 53–55.

    Article  CAS  PubMed  Google Scholar 

  27. Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W., and Adams, P. D. (2002) The Computational Crystallography Toolbox: crystallographic algorithms in a reusable software framework. J. Appl. Crystallogr. 35, 126–136.

    Article  CAS  Google Scholar 

  28. Grosse-Kunstleve, R. W., and Adams, P. D. (2003) Substructure search procedures for macromolecular structures. Acta Cryst. D59, 1966–1973.

    CAS  Google Scholar 

  29. Weeks, C. M., and Miller, R. (1999) Optimizing Shake-and-Bake for proteins. Acta Cryst. D55, 492–500.

    CAS  Google Scholar 

  30. Read, R. (2001) Pushing the boundaries of molecular replacement with maximum likelihood. Acta Cryst. D57, 1373–1382.

    CAS  Google Scholar 

  31. Schomaker, V., and Trueblood, K. (1968) On rigid-body motion of molecules in crystals. Acta Cryst. B24, 63.

    Google Scholar 

  32. Winn, M. D., Isupov, M. N., and Murshudov, G. N. (2001) Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Cryst. D57, 122–133.

    CAS  Google Scholar 

  33. Brunger, A. T., Adams, P. D., and Rice, L. M. (1999) Annealing in crystallography: a powerful optimization tool. Prog. Biophys. Mol. Biol. 72, 135–155.

    Article  CAS  PubMed  Google Scholar 

  34. Rice, L. M., and Brunger, A. T. (1994) Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19, 277–290.

    Article  CAS  PubMed  Google Scholar 

  35. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The protein data bank. Nucl. Acids Res. 28, 235–242.

    Article  CAS  PubMed  Google Scholar 

  36. Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.

    Article  CAS  PubMed  Google Scholar 

  37. Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S., Long, F., and Murshudov, G. N. (2004) REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Cryst. D57, 2184–2195.

    Google Scholar 

  38. Weininger, D. (1988) SMILES 1. Introduction and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31.

    CAS  Google Scholar 

  39. Morris, R. J., Zwart, P. H., Cohen, S., Fernandez, F. J., Kakaris, M., Kirillova, O., Vonrhein, C., Perrakis, A., and Lamzin, V. S. (2004) Breaking good resolutions with ARP/wARP. J. Synchrotr. Radiat. 11, 56–59.

    Article  CAS  Google Scholar 

  40. Fisher, R. G., and Sweet, R. M. (1980) Treatment of diffraction data from crystals twinned by merohedry as intended. Acta Cryst. A36, 755–760.

    CAS  Google Scholar 

  41. Yeates, T. O. (1988) Simple statistics for intensity data from twinned specimens. Acta Cryst. A44, 142–144.

    CAS  Google Scholar 

  42. Yeates, T. O. (1997) Detecting and overcoming crystal twinning. Meth. Enzymol. 276, 344–358.

    Article  CAS  PubMed  Google Scholar 

  43. Lebedev, A. A., Vagin, A. A., and Murshudov, G. N. (2006) Intensity statistics in twinned crystals with examples from the PDB. Acta Cryst. D62, 83–95.

    CAS  Google Scholar 

  44. Hyman, J., Chen, H., Di Fiore, P. P., De Camilli, P., and Brunger, A. T. (2000) Epsin 1 undergoes nucleocytosolic shuttling and its eps15 interactor NH(2)-terminal homology (ENTH) domain, structurally similar to Armadillo and HEAT repeats, interacts with the transcription factor promyelocytic leukemia Zn(2)+ finger protein (PLZF). J. Cell Biol. 149, 537–546.

    Article  CAS  PubMed  Google Scholar 

  45. Adolph, H. W., Zwart, P., Meijers, R., Hubatsch, I., Kiefer, M., Lamzin, V., and Cedergren-Zeppezauer, E. (2000) Structural basis for substrate specificity differences of horse liver alcohol dehydrogenase isozymes. Biochemistry 39, 12885–12897.

    Article  CAS  PubMed  Google Scholar 

  46. Golovin, A., Oldfield, T. J., Tate, J. G., Velankar, S., Barton, G. J., Boutselakis, H., Dimitropoulos, D., Fillon, J., Hussain, A., and Ionides, J. M., et al. (2004) E-MSD: an integrated data resource for bioinformatics. Nucl. Acids Res. 32, D211–216.

    Article  CAS  PubMed  Google Scholar 

  47. Sutton, R. B., Ernst, J. A., and Brunger, A. T. (1999) Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-inde-pendent snare complex interaction. J. Cell Biol. 147, 589–598.

    Article  CAS  PubMed  Google Scholar 

  48. Carr, P. D., Gustin, S. E., Church, A. P., Murphy, J. M., Ford, S. C., Mann, D. A., Woltring, D. M., Walker, I., Ollis, D. L., and Young, I. G. (2001) Structure of the complete extracellular domain of the common beta subunit of the human GM-CSF, IL-3, and IL-5 receptors reveals a novel dimer configuration. Cell 104, 291–300.

    Article  CAS  PubMed  Google Scholar 

  49. Zwart, P. (2005) Anomalous signal indicators in protein crystallography. Acta Cryst. D61, 1437–1448.

    CAS  Google Scholar 

  50. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., and Pannu, N. S., et al. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Cryst. D54, 905–921.

    CAS  Google Scholar 

  51. Potterton, L., McNicholas, S., Krissinel, E., Gruber, J., Cowtan, K., Emsley, P., Murshudov, G. N., Cohen, S., Perrakis, A., and Noble, M. (2004) Developments in the CCP4 molecular-graphics project. Acta Cryst. D60, 2288–2294.

    CAS  Google Scholar 

  52. Merritt, E. A. (1999) Comparing anisotropic displacement parameters in protein structures. Acta Cryst. D55, 1997–2004.

    CAS  Google Scholar 

Download references

Acknowledgments

PHENIX can be downloaded from http://www.phenix.online.org, and is freely available to nonprofit researchers. The open source crystallographic library (the CCTBX) is available from http://cctbx.sourceforge.net/.

The authors gratefully acknowledge the financial support of NIH/NIGMS through grants 5P01GM063210, 5P50GM062412, 5R01GM071939, and the PHENIX industrial consortium. This work was supported in part by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zwart, P.H. et al. (2008). Automated Structure Solution with the PHENIX Suite. In: Kobe, B., Guss, M., Huber, T. (eds) Structural Proteomics. Methods in Molecular Biology™, vol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-058-8_28

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-809-6

  • Online ISBN: 978-1-60327-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics