Skip to main content

Protein Crystallization in Restricted Geometry: Advancing Old Ideas for Modern Times in Structural Proteomics

  • Protocol
Structural Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 426))

In the structural genomics period traditional methods for protein crystallization have been eclipsed by automation using batch or vapor diffusion equilibration to find conditions conducive for protein crystal growth. Although many globular and soluble proteins predominantly from prokaryotes have been crystallized and their structures solved by high throughput approaches, the remaining difficult proteins require more systematic and reflective methods combining miniaturization and integration of modern and traditional crystallography techniques. One of these conventional methods is growing crystals in restricted geometry, which is a historically well-known concept and a practical technique under-used by today's crystallographers. This chapter presents practical guidelines to use capillaries for microbatch crystallization screening and counter-diffusion crystallization as valuable techniques to obtain protein crystals in confined volumes. The emphasis in the authors' application is to perform broad-based screening with a microgram amount of protein, optimize crystal growth in a supersaturation gradient, and undergo in situ x-ray data analysis for x-ray crystallography without invasive manipulation. Applications and concepts presented here bring to light future prerequisites for the next generation of automation for structural genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abola, E., Kuhn, P., Earnest, T., and Stevens, R. C. (2000) Automation of X-ray crystallography. Nat. Struct. Biol. 7, 973–977.

    Article  CAS  PubMed  Google Scholar 

  2. Page, R., Moy, K., Sims, E. C., Velasquez, J., McManus, B., Grittini, C., Clayton, T. L., and Stevens, R. C. (2004) Scalable high-throughput micro-expression device for recombinant proteins. Biotechniques 37, 364, 366, 368 passim.

    CAS  PubMed  Google Scholar 

  3. Miyatake, H., Kim, S.-H., Motegi, I., Matsuzaki, H., Kitahara, H., Higuchi, A., and Miki, K. (2005) Development of a fully automated macromolecular crystallization/ observation robotic system, HTS-80. Acta Crystallogr. D Biol. Crystallogr. 61, 658–663.

    Article  PubMed  Google Scholar 

  4. Kuhn, P., Wilson, K., Patch, M. G., and Stevens, R. C. (2002) The genesis of high-throughput structure-based drug discovery using protein crystallography. Curr. Opin. Chem. Biol. 6, 704–710.

    Article  CAS  PubMed  Google Scholar 

  5. Fu, Z.-Q., Rose, J., and Wang, B.-C. (2005) SGXPro: a parallel workflow engine enabling optimization of program performance and automation of structure deter mination. Acta Crystallogr. D Biol. Crystallogr. 61, 951–959.

    Article  PubMed  Google Scholar 

  6. Berry, I. M., Dym, O., Esnouf, R. M., Harlos, K., Meged, R., Perrakis, A., Sussman, J. L., Walter, T. S., Wilson, J., and Messerschmidt, A. (2006) SPINE high-throughput crystallization, crystal imaging and recognition techniques: current state, perform ance analysis, new technologies and future aspects. Acta Crystallogr. D Biol. Crystallogr. 62, 1137–1149.

    Article  PubMed  Google Scholar 

  7. Puri, M., Robin, G., Cowieson, N., Forwood, J. K., Listwan, P., Hu, S.-H., Guncar, G., Huber, T., Kellie, S., and Hume, D. A. (2006) Focusing in on structural genomics: the University of Queensland structural biology pipeline. Biomol. Eng. 23, 281–289.

    Article  CAS  PubMed  Google Scholar 

  8. Pusey, M. L., Liu, Z. J., Tempel, W., Praissman, J., Lin, D., Wang, B. C., Gavira, J. A., and Ng, J. D. (2005) Life in the fast lane for protein crystallization and X-ray crystallography. Prog. Biophys. Mol. Biol. 88, 359–386.

    Article  CAS  PubMed  Google Scholar 

  9. Page, R., Grzechnik, S. K., Canaves, J. M., Spraggon, G., Kreusch, A., Kuhn, P., Stevens, R. C., and Lesley, S. A. (2003) Shotgun crystallization strategy for structural genomics: an optimized two-tiered crystallization screen against the Thermotoga maritima proteome. Acta Crystallogr. D Biol. Crystallogr. 59, 1028–1037.

    Article  PubMed  Google Scholar 

  10. Lesley, S. A., Kuhn, P., Godzik, A., Deacon, A. M., Mathews, I., Kreusch, A., Spraggon, G., Klock, H. E., McMullan, D., Shin, T., Vincent, J., Robb, A., Brinen, L. S., Miller, M. D., McPhillips, T. M., Miller, M. A., Scheibe, D., Canaves, J. M., Guda, C., Jaroszewski, L., Selby, T. L., Elsliger, M. A., Wooley, J., Taylor, S. S., Hodgson, K. O., Wilson, I. A., Schultz, P. G., and Stevens, R. C. (2002) Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc. Natl. Acad. Sci. USA 99, 11664–11669.

    Article  CAS  PubMed  Google Scholar 

  11. Santarsiero, B. D., Yegian, D. T., Lee, C. C., Spraggon, G., Gu, J., Scheibe, D., Uber, D. C., Cornell, E. W., Nordmeyer, R. A., Kolbe, W. F., Jin, J., Jones, A. L., Jaklevic, J. M., Schultz, P. G., and Stevens, R. C. (2002) An approach to rapid protein crystal lization using nanodroplets. J. Appl. Crystallogr. 35, 278–281.

    Article  CAS  Google Scholar 

  12. Liu, Z. J., Tempel, W., Ng, J. D., Lin, D., Shah, A. K., Chen, L., Horanyi, P. S., Habel, J. E., Kataeva, I. A., Xu, H., Yang, H., Chang, J. C., Huang, L., Chang, S. H., Zhou, W., Lee, D., Praissman, J. L., Zhang, H., Newton, M. G., Rose, J. P., Richardson, J. S., Richardson, D. C., and Wang, B. C. (2005) The high-throughput protein-to-structure pipeline at SECSG. Acta Crystallogr. D Biol. Crystallogr. 61, 679–684.

    Article  PubMed  Google Scholar 

  13. Wang, B. C., Adams, M. W., Dailey, H., DeLucas, L., Luo, M., Rose, J., Bunzel, R., Dailey, T., Habel, J., Horanyi, P., Jenney, F. E., Jr., Kataeva, I., Lee, H. S., Li, S., Li, T., Lin, D., Liu, Z. J., Luan, C. H., Mayer, M., Nagy, L., Newton, M. G., Ng, J., Poole, F. L., 2nd, Shah, A., Shah, C., Sugar, F. J., and Xu, H. (2005) Protein production and crystallization at SECSG—an overview. J Struct Funct Genomics 6, 233–243.

    Article  CAS  PubMed  Google Scholar 

  14. DiDonato, M., Deacon, A. M., Klock, H. E., McMullan, D., and Lesley, S. A. (2004) A scaleable and integrated crystallization pipeline applied to mining the Thermotoga maritima proteome. J. Struct. Funct. Genomics 5, 133–146.

    Article  CAS  PubMed  Google Scholar 

  15. Li, F., Robinson, H., and Yeung, E. S. (2005) Automated high-throughput nanoliters-cale protein crystallization screening. Anal Bioanal Chem 383, 1034–1041.

    Article  CAS  PubMed  Google Scholar 

  16. DeLucas, L. J., Hamrick, D., Cosenza, L., Nagy, L., McCombs, D., Bray, T., Chait, A., Stoops, B., Belgovskiy, A., and William Wilson, W. (2005) Protein crystallization: virtual screening and optimization. Prog. Biophys. Mol. Biol. 88, 285.

    Article  CAS  PubMed  Google Scholar 

  17. Fenglei, L., Howard, R., and Edward, S. Y. (2005) Automated high-throughput nanoliter-scale protein crystallization screening. Anal. Bioanal. Chem. 383, 1034.

    Article  Google Scholar 

  18. Rebecca, P., Ashley, M. D., Scott, A. L., Raymond, C. S. (2005) Shotgun crystalliza tion strategy for structural genomics ii: crystallization conditions that produce high resolution structures for T. maritima proteins. J. Struct. Funct. Genomics 6, 209.

    Article  Google Scholar 

  19. Symposia of Protein Crystal Growth and Structural Genomics, Quebec City, August 17–18, 2006.

    Google Scholar 

  20. Chandonia, J.-M., and Brenner, S. E. (2006) The impact of structural genomics: expectations and outcomes. Science 311, 347–351.

    Article  CAS  PubMed  Google Scholar 

  21. Hansen, C. L., Skordalakes, E., Berger, J. M., and Quake, S. R. (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl. Acad. Sci. USA 99, 16531–16536.

    Article  CAS  PubMed  Google Scholar 

  22. Garcia-Ruiz, J. M., and Ng, J. D. (2006) Counter-diffusion capillary crystalliza tion for high throughput applications, in (Chayen, N., ed.), Protein Crystallization Strategies for Structural Genomics, International University Line, La Jolla, CA.

    Google Scholar 

  23. Carter, D. C., Rhodes, P., McRee, D. E., Tari, L. W., Dougan, D. R., Snell, G., Abola, E., and Stevens, R. C. (2005) Reduction in diffuso-convective distur bances in nanovolume protein crystallization experiments. J. Appl. Crystallogr. 38, 87–90.

    Article  CAS  Google Scholar 

  24. Garcia-Ruiz, J. M. (2003) Counterdiffusion methods for macromolecular crystallization. Methods Enzymol. 368, 130–154.

    Article  CAS  PubMed  Google Scholar 

  25. Gavira, J. A., Toh, D., Lopez-Jaramillo, J., Garcia-Ruiz, J. M., Ng, J. D. (2002) Ab initio crystallographic structure determination of insulin from protein to electron den sity without crystal handling. Acta Crystallogr. D Biol. Crystallogr. 58, 1147–1154.

    Article  PubMed  Google Scholar 

  26. Ng, J. D., Gavira, J. A., Garcia-Ruiz, J. M. (2003) Protein crystallization by capillary counterdiffusion for applied crystallographic structure determination. J. Struct. Biol. 142, 218–231.

    Article  CAS  PubMed  Google Scholar 

  27. Liesegang, R. (1897) Chemische Fernwirkung. Photographisches Arch. 800, 305–309.

    Google Scholar 

  28. Ostwald, W. (1897) Besprechung der Arbeit von Liesenganga A-Linien. Z. Phys. Chem. 23, 365.

    Google Scholar 

  29. Ostwald, W. (1899) Lehrb. D. allgem. Chem., 2nd ed., Leipzig, Germany, 778.

    Google Scholar 

  30. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326.

    Article  CAS  Google Scholar 

  31. Zheng, B., Roach, L. S., and Ismagilov, R. F. (2003) Screening of protein crystalli zation conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 125, 11170–11171.

    Article  CAS  PubMed  Google Scholar 

  32. Yadav, M. K., Gerdts, C. J., Sanishvili, R., Smith, W. W., Roach, L. S., Ismagilov, R. F., Kuhn, P., and Stevens, R. C. (2005) In situ data collection and structure refinement from microcapillary protein crystallization. J. Appl. Crystallogr. 38, 900–905.

    Article  CAS  PubMed  Google Scholar 

  33. Wooh, J. W., Kidd, R. D., Martin, J. L., and Kobe, B. (2003) Comparison of three commercial sparse-matrix crystallization screens. Acta Crystallogr. D Biol. Crystallogr. 59, 769–772.

    Article  PubMed  Google Scholar 

  34. Otalora, F., and Garcia-Ruiz, J. M. (1996) Computer model of the diffusion/reaction interplay in the gel acupuncture method. J. Cryst. Growth 169, 361–367.

    Article  CAS  Google Scholar 

  35. Garcia-Ruiz, J. M. (1991) Uses of crystal growth in gels and other diffusing-reacting systems. Key Eng. Mater. 88, 87–106.

    Article  Google Scholar 

  36. Ng, J. D., and Garcia-Ruiz, J. M. (2006) Counter-diffusion capillary crystallization for structural genomics. Screening-Trends in Drug Discovery 3, 36.

    Google Scholar 

  37. Ng, J. D. (2002) Space-grown protein crystals are more useful for structure determination. Ann. NY Acad. Sci. 974, 598–609.

    Article  CAS  PubMed  Google Scholar 

  38. McPherson, A. (1999) Crystallization of Biological Macromolecules. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  39. Dauter, Z. (2004) Phasing in iodine for structure determination. Nat. Biotechnol. 22, 1239–1240.

    Article  CAS  PubMed  Google Scholar 

  40. Dauter, Z., Dauter, M., and Rajashankar, K. R. (2000) Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Crystallogr. D Biol. Crystallogr. 56, 232–237.

    Article  CAS  PubMed  Google Scholar 

  41. Dauter, Z., Li, M., and Wlodawer, A. (2001) Practical experience with the use of halides for phasing macromolecular structures: a powerful tool for structural genomics. Acta Crystallogr. D Biol. Crystallogr. 57, 239–249.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The techniques reported here are derived from the collaborative effort between the University of Alabama in Huntsville and The Scripps Research Institute. Proof of concept of counter-diffusion crystallization for In situ crystallography was developed with Juan Manual García-Ruiz and José A. Gavira. The authors thank NSF (Alabama Structural Biology Consortium NSF-EPSCoR ) and NIH (NIH Roadmap award GM073197)

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ng, J.D., Stevens, R.C., Kuhn, P. (2008). Protein Crystallization in Restricted Geometry: Advancing Old Ideas for Modern Times in Structural Proteomics. In: Kobe, B., Guss, M., Huber, T. (eds) Structural Proteomics. Methods in Molecular Biology™, vol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-058-8_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-809-6

  • Online ISBN: 978-1-60327-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics