Skip to main content

Multiplex Genotyping for Thrombophilia-Associated SNPs by Universal Bead Arrays

  • Protocol
DNA and RNA Profiling in Human Blood

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 496))

Abstract

This chapter describes a method for the multiplex analysis of six biallelic single nucleotide polymorphisms (SNPs) associated with thrombophilia. The method may, however, be adapted for the simultaneous analysis of up to 100 markers (50 biallelic SNPs) in a single reaction. In the method described, the targets of interest are amplified by single-tube multiplex PCR using six primer sets followed by single-tube multiplex allele-specific primer extension using 12 universally tagged genotyping primers. Labeled extension products are sorted using the xTAG™ universal bead-based array and detected on the Luminex xMAPˆledR system. The 12 universal tag sequences used in the assay derive from a set of 100 universal tags which have been designed to be isothermal and have been empirically validated to show that mismatch hybridization events are minimal. The method is suitable for cost-effective high-throughput clinical genotyping applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosendaal, F. R. (1999) Venous thrombosis: a multicausal disease. Lancet 353, 1167–1173.

    Article  CAS  PubMed  Google Scholar 

  2. Franco, R. F., Reitsma, P. H. (2001) Genetic risk factors of venous thrombosis. Hum Genet 109, 369–384.

    Article  CAS  PubMed  Google Scholar 

  3. Bertina, R. M., Koeleman, B. P., Koster, T., Rosendaal, F. R., Dirven, R. J., de Ronde, H., et al. (1994) Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369, 64–67.

    Article  CAS  PubMed  Google Scholar 

  4. Poort, S. R., Rosendaal, F. R., Reitsma, P. H., Bertina, R. M. (1996) A common genetic variation in the -untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88, 3698–3703.

    CAS  PubMed  Google Scholar 

  5. Frosst, P., Blom, H. J., Milos, R., Goyette, P., Sheppard, C. A., Matthews, R. G., et al. (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10, 111–113.

    Article  CAS  PubMed  Google Scholar 

  6. van der Put, N. M. J., Gabreels, F., Stevens, E. M. B., Smeitink, J. A. M., Trijbels, F. J. M., Eskes, T. K. A. B., et al. (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62, 1044–1051.

    Google Scholar 

  7. Mikkola, H., Syrjala, M., Rasi, V., Vahtera, E., Hamalainen, E., Peltonen, L., Palotie, A. (1994) Deficiency in the A-subunit of coagulation factor XIII: two novel point mutations demonstrate different effects on transcript levels. Blood 84, 517–525.

    CAS  PubMed  Google Scholar 

  8. Girard, T. J., Eddy, R., Wesselschmidt, R. L., MacPhail, L. A., Likert, K. M., Byers, M. G., et al. (1991) Structure of the human lipoprotein-associated coagulation inhibitor gene. J Biol Chem 266, 5036–5041.

    CAS  PubMed  Google Scholar 

  9. Franco, R. F., Morelli, V., Lourenco, D., Maffei, F. H., Tavella, M. H., Piccinato, C. E., et al. (1999) A second mutation in the methylenetetrahydrofolate reductase gene and the risk of venous thrombotic disease. Br J Haematol 105, 556–559.

    Article  CAS  PubMed  Google Scholar 

  10. Franco, R. F., Reitsma, P. H., Lourenco, D., Maffei, F. H., Morelli, V., Tavella, M. H., et al. (1999) Factor XIII Val34Leu is a genetic factor involved in the etiology of venous thrombosis. Thromb Haemost 81, 676–679.

    CAS  PubMed  Google Scholar 

  11. van Hylckama Vlieg, A., Komanasin, N., Ariens, R. A. S., Poort, S. R., Grant, P. J., Bertina, R. M., Rosendaal, F. R. (2002) Factor XIII Val34Leu polymorphism, factor XIII antigen levels and activity and the risk of deep vein thrombosis. Br J Haematol 119, 169–175.

    Article  PubMed  Google Scholar 

  12. Kleesiek, K., Schmidt, M., Gotting, C., Brinkmann, T., Prohaska, W. (1998) A first mutation in the human tissue factor pathway inhibitor gene encoding [P151L]TFPI. Blood 92, 3976–3977.

    CAS  PubMed  Google Scholar 

  13. Kleesiek, K., Schmidt, M., Gotting, C., Schwenz, B., Lange, S., Muller-Berghaus, G., et al. (1999) The 536C→T transition in the human tissue factor pathway inhibitor (TFPI) gene is statistically associated with a higher risk for venous thrombosis. Thromb Haemost 82, 1–5.

    CAS  PubMed  Google Scholar 

  14. Evans, G. D., Langdown, J., Brown, K., Baglin, T. P. (2000) The C536T transition in the tissue factor pathway inhibitor gene is not a common cause of venous thromboembolic disease in the UK population. Thromb Haemost 83, 511.

    CAS  PubMed  Google Scholar 

  15. Mullis, K. B., Faloona, F. A. (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155, 335–350.

    Article  CAS  PubMed  Google Scholar 

  16. Markoulatos, P., Siafakas, N., Moncany, M. (2002) Multiplex polymerase chain reaction: a practical approach. J Clin Lab Anal 16, 47–51.

    Article  CAS  PubMed  Google Scholar 

  17. Ugozzoli, L., Wahlqvist, J. M., Ehsani, A., Kaplan, B. E., Wallace, R. B. (1992) Detection of specific alleles by using allele-specific primer extension followed by capture on solid support. Genet. Anal Tech Appl 9, 107–112.

    CAS  PubMed  Google Scholar 

  18. Ye, F., Li, M., Taylor, J. D., Nguyen, Q., Colton, H. M., Casey, W. M., et al. (2001) Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification. Hum Mutat 17, 305–316.

    Article  CAS  PubMed  Google Scholar 

  19. Dunbar, S. A. (2006) Applications of LuminexˆledR xMAP™ technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363, 71–82.

    Article  CAS  PubMed  Google Scholar 

  20. Bortolin, S., Black, M., Modi, H., Boszko, I., Kobler, D., Fieldhouse, D., et al. (2004) Analytical validation of the Tag-It high-throughput microsphere-based universal array genotyping platform: application to the multiplex detection of a panel of thrombophilia-associated single-nucleotide polymorphisms. Clin Chem 50, 2028–2036.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bortolin, S. (2008). Multiplex Genotyping for Thrombophilia-Associated SNPs by Universal Bead Arrays. In: Bugert, P. (eds) DNA and RNA Profiling in Human Blood. METHODS IN MOLECULAR BIOLOGY™, vol 496. Humana Press. https://doi.org/10.1007/978-1-59745-553-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-553-4_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-93-0

  • Online ISBN: 978-1-59745-553-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics