Skip to main content

Classical Proteomics: Two-Dimensional Electrophoresis/MALDI Mass Spectrometry

  • Protocol
Mass Spectrometry of Proteins and Peptides

Part of the book series: Methods In Molecular Biology ((MIMB,volume 492))

Summary

The rapid development in proteomics over the last 10 years has led to a series of new technologies and combinations of them designed to unravel as much as possible of the proteins of an organism or otherwise specified biological material. Despite being a little tricky at certain steps, 2-DE has a very high resolution power with more than 10,000 spots per gel and is able to separate one protein into its different protein species caused by posttranslational modifications, alternative splicing or genetic variability. This high-resolution separation is combined with a highly sensitive identification method using peptide mass fingerprinting combined with sequence information by MS/MS, which results in high sequence coverage: the key to elucidate protein species structures. The off-line measurement by MALDI-TOFTOF-MS allows the repeated measurement of each sample and therefore provides more complete structure information for each protein species. The presented protocols represent the basic technology consisting of 2-DE, two staining methods, tryptic digestion and MALDI-TOFTOF-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macko, V. and Stegemann, H. (1969) Mapping of potato proteins by combined electrofocusing and electrophoresis identification of varieties. Hoppe-Seyler's Z. Physiol. Chem. 350, 917–919.

    CAS  PubMed  Google Scholar 

  2. Kaltschmidt, E. and Wittmann, H.G. (1970)Ribosomal proteins. VII Two-dimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. Anal. Biochem. 36, 401–412.

    Article  CAS  PubMed  Google Scholar 

  3. Vesterberg, O. and Svensson, H. (1966)Isoelectric fractionation, analysis and characterization of ampholytes in natural pH gradients. IV. Further studies on the resolving power in connection with the separation of myoglobins. Acta Chem. Scand. 20, 820–834.

    Article  CAS  PubMed  Google Scholar 

  4. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  5. O'Farrell, P.H. (1975) High-resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.

    PubMed  Google Scholar 

  6. Klose, J. and Kobalz, U. (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electro-phoresis 16, 1034–1059.

    Article  CAS  Google Scholar 

  7. Westermeier, R., Postel, W., Weser, J., and oerg, A. (1983) High-resolution 2-DE with IEF in immobilized pH gradients. J. Biochem. Biophys. Methods 8, 321–330.

    Article  CAS  PubMed  Google Scholar 

  8. Towbin, H., Staehelin, T., and Gordon, J.(1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl Acad. Sci. U. S. A. 76, 4350–4354.

    Article  CAS  PubMed  Google Scholar 

  9. Vandekerckhove, J., Bauw, G., Puype, M.,Van Damme, J., and Van Montagu, M. (1985) Protein-blotting on Polybrene-coated glass-fiber sheets. A basis for acid hydrolysis and gas-phase sequencing of picomole quantities of protein previously separated on sodium dodecyl sulfate/poly-acrylamide gel. Eur. J. Biochem. 152, 9–19.

    Article  CAS  PubMed  Google Scholar 

  10. Eckerskorn, C., Jungblut, P., Mewes, W., Klose, J., and Lottspeich, F. (1988) Identification of mouse brain proteins after two-dimensional electrophoresis and elec-troblotting by microsequence analysis and amino acid composition analysis. Electro-phoresis 9, 830–838.

    Article  Google Scholar 

  11. Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301.

    Article  CAS  PubMed  Google Scholar 

  12. Fenn, J.B., Mann, M., Meng, C.K., Wong,S.F., and Whitehouse, C.M. (1989) Electro-spray ionization for mass spectrometry of large biomolecules. Science 246 (4926), 64–71.

    Article  CAS  PubMed  Google Scholar 

  13. Pappin, D.J., Hojrup, P., and Bleasby, A.J.(1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 3, 327–332.

    Article  CAS  PubMed  Google Scholar 

  14. Medzihradszky, K.F., Campbell, J.M., Bald-win, M.A., Falick, A.M., Juhasz, P., Vestal, M.L., and Burlingame, A.L. (2000) The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 72, 552–558.

    Article  CAS  PubMed  Google Scholar 

  15. Klose, J. (1999) Large-gel 2-D electro-phoresis, In Methods in Molecular Biology 112: 2-D Proteome Analysis Protocols (Link, A.J., (ed.), Humana Press, Totowa, NJ, pp 147–172.

    Google Scholar 

  16. Rabilloud, T. (1999) Solubilization of proteins in 2-D electrophoresis, In Methods in Molecular Biology 112: 2-D Proteome Analysis Protocols (Link, A.J., (ed.), Humana Press, Totowa, NJ, pp 9–19.

    Google Scholar 

  17. Jungblut, P.R., and Seifert, R. (1990) Analysis by high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells. J. Biochem. Biophys. Methods 21, 47–58.

    Article  CAS  PubMed  Google Scholar 

  18. Doherty, N.S., Littman, B.H., Reilly, K.,Swindell, A.C., Buss, J.M., and Anderson, N.L. (1998) Analysis of changes in acute-phase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel electrophoresis. Electrophoresis 19, 355–363.

    Article  CAS  PubMed  Google Scholar 

  19. Scheler, C., Lamer, S., Pan, Z., Li, X.P., Salnikow, J., and Jungblut, P. (1998) Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensionalelectrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrom-etry (MALDI-MS). Electrophoresis 19, 918–927.

    Article  CAS  PubMed  Google Scholar 

  20. Miller, I., Crawford, J., and Gianazza, E.(2006) Protein stains for proteomic applications: which, when, why? Proteomics 6, 5385–5408.

    Article  CAS  PubMed  Google Scholar 

  21. Jungblut, P.R., Bumann, D., Haas, G.,Zimny-Arndt, U., Holland, P., Lamer, S., Siejak, F., Aebischer, A., and Meyer, T.F. (2000) Comparative proteome analysis of Helicobacter pylori. Mol. Microbiol. 36, 710–725.

    CAS  Google Scholar 

  22. Schmidt, F., Donahoe, S., Hagens, K., Mattow, J., Schaible, U.E., Kaufmann, S.H., Aebersold, R., and Jungblut, P.R. (2004) Complementary analysis of the Mycobacte-rium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol. Cell. Proteomics 3, 24–42.

    CAS  PubMed  Google Scholar 

  23. Schmidt, F., Schmid, M., Facius, A., Mattow, J., Pleissner, K.-P., and Jungblut, P.R. (2003) Iterative data analysis is the key for exhaustive analysis of peptide mass fingerprints from proteins separated by two-dimensional electrophoresis. JASMS 14, 943–956.

    CAS  Google Scholar 

  24. Schmidt, F., Krah, A., Schmid, M., Jungblut, P.R., and Thiede, B. (2006) Distinctive mass losses of tryptic peptides generated by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight. Rapid Com-mun. Mass Spectrom. 20, 933–936.

    Article  CAS  Google Scholar 

  25. Hoehenwarter, W., Ackermann, R., Zimny- Arndt, U., Kumar, N.M., and Jungblut, P.R. (2006) The necessity of functional pro-teomics: protein species and molecular function elucidation exemplified by in vivo alpha A crystallin N-terminal truncation. Amino Acids 31, 317–323.

    Article  CAS  PubMed  Google Scholar 

  26. Okkels, L.M., Müller, E.C., Schmid, M., Rosenkrands, I., Kaufmann, S.H., Andersen, P., Jungblut, P.R. (2004) CFP10 discriminates between nonacetylated and acetylated ESAT-6 of Mycobacterium tuberculosis by differential interaction. Proteomics 4, 2954–2960.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Klose from The Institute of Human Genetics, Charité Berlin, who helped with developing the basis of the 2-DE technology presented here and coworkers from MPIIB for many useful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zimny-Arndt, U., Schmid, M., Ackermann, R., Jungblut, P.R. (2009). Classical Proteomics: Two-Dimensional Electrophoresis/MALDI Mass Spectrometry. In: Lipton, M.S., Paša-Tolic, L. (eds) Mass Spectrometry of Proteins and Peptides. Methods In Molecular Biology, vol 492. Humana Press. https://doi.org/10.1007/978-1-59745-493-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-493-3_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-48-0

  • Online ISBN: 978-1-59745-493-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics