Skip to main content

Fluorescence-Based Assays for In Vitro Analysis of Cell Adhesion and Migration

  • Protocol
  • First Online:
Extracellular Matrix Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 522))

Summary

Cell adhesion and cell migration are two primary cellular phenomena for which in vitro approaches may be exploited to effectively dissect the individual events and underlying molecular mechanisms. The use of assays dedicated to the analysis of cell adhesion and migration in vitro also afford an efficient way of conducting larger basic and applied research screenings on the factors affecting these processes and are potentially exploitable in the context of routine diagnostic, prognostic, and predictive tests in the biological and medical fields. Therefore, there is a longstanding continuum in the interest in devising more rationale such assays and major contributions in this direction have been provided by the advent of procedures based on fluorescence cell tagging, the design of instruments capable of detecting fluorescent signals with high sensitivity, and informatic tools allowing sophisticated elaboration of data generated through these instruments. In this report, we describe three representative fluorescence-based model assays for the qualitative and quantitative assessment of cell adhesion and cell locomotion in static and dynamic conditions. The assays are easily performed, accurate and reproducible, and can be automated for high-to-medium throughput screenings of cell behavior in vitro. Performance of the assays involves the use of certain dedicated disposable accessories, which are commercially available, and a few instruments that, due to their versatility, can be regarded as constituents of a more generic laboratory setup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy, P., Petroll, W.M., Cavanagh, H.D., Chuong, C.J., and Jester, J.V. 1997 An in vitro force measurement assay to study the early mechanical interaction between corneal fibroblasts and collagen matrix. Exp. Cell Res. 232, 106–117

    Article  PubMed  CAS  Google Scholar 

  2. Lotz, M.M., Burdsal, C.A., Erickson, H.P., and McClay, D.R. 1989 Cell adhesion to fibronectin and tenascin: quantitative measurements of initial binding and subsequent strengthening response. J. Cell. Biol. 109, 1795–1805

    Article  PubMed  CAS  Google Scholar 

  3. Lallier, T., and Bronner-Fraser, M. 1991 Avian neural crest cell attachment to laminin: Involvement of divalent cation dependent and independent integrins. Development 113, 1069–1084

    PubMed  CAS  Google Scholar 

  4. Perris, R., Kuo, H.J., Glanville, R.W., and Bronner-Fraser, M. 1993 Collagen type VI in neural crest development: distribution in situ and interaction with cells in vitro. Dev. Dyn. 198, 135–149

    Article  PubMed  CAS  Google Scholar 

  5. Lallier, T., Deutzmann, R., Perris, R., and Bronner-Fraser, M. 1994 Neural crest cell interactions with laminin: structural requirements and localization of the binding site for α1β1 integrin. Dev. Biol. 162, 451–464

    Article  PubMed  CAS  Google Scholar 

  6. Yin, Z., Gabriele, E., Leprini, A., Perris, R., and Colombatti, A. 1997 Differential cation regulation of the α5β1 integrin-mediated adhesion of leukemic cells to the central cell-binding domain of fibronectin. Cell. Growth Differ. 8, 1339–1347

    PubMed  CAS  Google Scholar 

  7. Garcìa, A.J., Huber, F., and Boettiger, D. 1998 Force required to break α5β1 integrin-fibronectin bonds in intact cells is sensitive to integrin activation state. J. Cell. Biol. 273, 10988–10993

    Google Scholar 

  8. Hug, T.S. 2003 Biophysical methods for monitoring cell–substrate interactions in drug discovery. Assay Drug Dev. Technol. 1, 479–488

    Article  PubMed  CAS  Google Scholar 

  9. Puri, K.D., Chen, S., and Springer, T.A. 1998 Modifying the mechanical property and shear threshold of L-selectin adhesion independently of equilibrium properties. Nature 329, 930–933

    Google Scholar 

  10. Jadhav, S., Eggleton, C.D., and Konstantopoulos, K. 2007 Mathematical modeling of cell adhesion in shear flow: application to targeted drug delivery in inflammation and cancer metastasis. Curr. Pharm. Des. 13, 1511–1526

    Article  PubMed  CAS  Google Scholar 

  11. Bongrand, P., Claesson, P.M., and Curtis, A.S.G., eds (1994) Studying cell adhesion. Springer-Verlag Berlin Heidelberg

    Google Scholar 

  12. Evans, E.A. 1985 Detailed mechanics of membrane-membrane adhesion and separation II. Discrete kinetically trapped molecular cross-bridges. Biophys. J. 48, 185–192

    Article  PubMed  CAS  Google Scholar 

  13. Gimzewski, J.K., and Joachim, C. 1999 Nanoscale science of single molecules using local probes. Science 283, 1683–1688

    Article  PubMed  CAS  Google Scholar 

  14. Benoit, M., Gabriel, D., Gerish, G., and Gaub, H.E. 2000 Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2, 313–317

    Article  PubMed  CAS  Google Scholar 

  15. Binnig, G., Quate, C. F., and Gerber, C. 1986 Atomic force microscope. Phys. Rev. Lett. 56, 930–933

    Article  PubMed  Google Scholar 

  16. Goodwin, A.E., and Pauli, B.U. 1995 A new adhesion assay using buoyancy to remove non-adherent cells. J. Immunol. Methods 187, 213–219

    Article  PubMed  CAS  Google Scholar 

  17. St John, J.J., Schroen, D.J., and Cheung, H.T. 1996 An adhesion assay using minimal shear force to remove nonadherent cells. J. Immunol. Methods 170, 159–166

    Article  Google Scholar 

  18. Segat, D., Pucillo, C., Marotta, G., Perris, R., and Colombatti, A. 1994 Differential attachment of human neoplastic B cells to purified extracellular matrix molecules. Blood. 83, 1586–1594

    PubMed  CAS  Google Scholar 

  19. Perris, R., Perissinotto, D., Pettway, Z., Bronner-Fraser, M., Mörgelin, M., and Kimata, K. 1996 Inhibitory effects of PG-H/aggrecan and PG-M/versican on avian neural crest cell migration. FASEB J. 10, 293–301

    PubMed  CAS  Google Scholar 

  20. Mc Clay, D.R., Wessel, G.M., and Marchase, R.B. 1981 Intercellular recognition: quantitation of initial binding events. Proc. Natl. Acad. Sci. U.S.A. 78, 4975–4979

    Article  CAS  Google Scholar 

  21. Giacomello, E., Neumayer, J., Colombatti, A., and Perris, R. 1998 CAFCA - A centrifugal assay for fluorescence-based cell adhesion adapted to the analysis of ex vivo cells and capable of determining relative binding avidities. Biotechniques 26, 758–766

    Google Scholar 

  22. Maeda, Y., Tanaka, K., Koga, K., Zhang, X.Y., Sasaki, M., Kimura, M., and Nomoto, K. 1993 A simple quantitative in vitro assay for thymocyte adhesion to thymic epithelial cells using a fluorescein diacetate. J. Immunol. Methods 157, 117–123

    Article  PubMed  CAS  Google Scholar 

  23. Vaporciyan, A.A., Jones, M.L., and Ward, P.A. 1993 Rapid analysis of leukocyte-endothelial adhesion. J. Immunol. Methods. 159, 93–100

    Article  PubMed  CAS  Google Scholar 

  24. De Clerck, L.S., Bridts, C.H., Mertens, A.M., Moens, M.M., and Stevens, W.J. 1994 Use of fluorescent dyes in the determination of adherence of human leukocytes to endothelial cells and the effect of fluorochromes on cellular function. J. Immunol. Methods 172, 115–124

    Article  PubMed  CAS  Google Scholar 

  25. McEver, R., and Cummings, R.D. 1997 Role of PSGL-1 binding to selectins in leukocyte recruitment. J. Clin. Invest. 100, 485–492

    Article  PubMed  CAS  Google Scholar 

  26. Schmuke, J.J., and Welply, J.K. 1995 A method for measuring leukocyte rolling on the selectins. Anal. Biochem. 226, 197–201

    Article  PubMed  CAS  Google Scholar 

  27. Hiraoka, N., Petryniak, B., Nakayama, J., Tsuboi, S., Suzuki, M., Yeh, J-C., Izaka, D., Tanaka, T., Miyasaka, M., Lowe, J.B., and Fukuda, M. 1999 A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewisx, an l-selectin ligand displayed by CD34. Immunity 11, 79–89

    Article  PubMed  CAS  Google Scholar 

  28. Siegelman, M.H., Stanescu, D., and Estess, P. 2000 The CD44-initiated pathway of T-cell extravasation uses VLA-4 but not LFA-1 for firm adhesion. J. Clin. Invest. 105, 683–691

    Article  PubMed  CAS  Google Scholar 

  29. Khiabani, K.T., Stephenson, L.L., Gabriel, A., Nataraj, C., Wang, W.Z., and Zamboni, W.A. 2004 A quantitative method for determining polarization of neutrophil adhesion molecules associated with ischemia reperfusion. Plast. Reconstr. Surg. 114, 1846–1850

    Article  PubMed  Google Scholar 

  30. Li, X., Rawn, J., DeCamp, M.M., and Mentzer, S.J. 1996 Hybridoma screening for cell adhesion molecules using multiple parallel comparisons in conditions of flow. Hibridoma 15, 43–47

    Article  CAS  Google Scholar 

  31. Kulesa, P., Bronner-Fraser, M., and Fraser, S.E. 2000 In ovo time-lapse analysis after dorsal neural tube ablation shows rerouting of the chick hindbrain neural crest. Development 127, 2843–2852

    PubMed  CAS  Google Scholar 

  32. Kulesa, P., and Fraser, S.E. 1998 Neural crest cell dynamics revealed by time-lapse video microscopy of whole embryo chick explant cultures. Dev. Biol. 204, 327–344

    Article  PubMed  CAS  Google Scholar 

  33. Knight, B., Laukaitis, C., Akhtar, N., Hotchin, N.A., Edlund, M., and Horwitz, A.R. 2000 Visualizing muscle cell migration in situ. Curr. Biol. 10, 576–585

    Article  PubMed  CAS  Google Scholar 

  34. Scherbarth, S., and Orr, W. 1997 Intravital microscopic evidence fro regulation of metastasis by the hepatic microvasculature: effects of interleukin-1α on metastasis and the location of B16F1 melanoma cell arrest. Cancer Res. 57, 4105–4110

    PubMed  CAS  Google Scholar 

  35. Vajkoczy, P., Ullrich, A., and Menger, M.D. 2000 Intravital fluorescence videomicroscopy to study tumour angiogenesis and microcirculation. Neoplasia 2, 53–61

    Article  PubMed  CAS  Google Scholar 

  36. Andre, P., Denis, C.V., Ware, J., Saffaripour S., Hynes, R.O., Ruggeri, Z.M., and Wagner, D.D. 2000 Platelet adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins. Blood 96, 3322–3328

    PubMed  CAS  Google Scholar 

  37. Becker, M.D., Nobiling, R., Planck, S.R., and Rosenbaum, J.T. 2000 Digital video-imaging of leukocyte migration in the iris: intravital microscopy in a physiological model during the onset of endotoxin-induced uveitis. J. Immunol. Methods. 240, 23–37

    Article  PubMed  CAS  Google Scholar 

  38. Halin, C., Rodrigo Mora, J., Sumen, C, and von Andrian, U.H. 2005 In vivo imaging of lymphocyte trafficking. Annu. Rev. Cell. Dev. Biol. 21, 581–603

    Article  PubMed  CAS  Google Scholar 

  39. Boissonnas, A., Fetler, L., Zeelenberg, I.S., Hugues, S., and Amigorena, S. 2007 In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J. Exp. Med. 204, 345–356

    Article  PubMed  CAS  Google Scholar 

  40. Koike, C., Watanabe, M., Oku, N., Tsukada, H., Irimura, T., and Okada, S. 1997 Tumor cells with organ-specific metastatic ability show distinctive trafficking in vivo: Analyses by positron emission tomography and bioimaging. Cancer Res. 57, 3612–3619

    PubMed  CAS  Google Scholar 

  41. Phelps, M.E. 2000 Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. U.S.A. 97, 9226–9233

    Article  PubMed  CAS  Google Scholar 

  42. Voura, E.B., Jaiswal, J.K., Mattoussi, H., and Simon, S.M. 2004 Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 10, 993–998

    Article  PubMed  CAS  Google Scholar 

  43. Jacobs, R.E., and Fraser, S.E. 1994 Imaging neuronal development with magnetic resonance imaging (NMR) microscopy. J. Neurosci. Methods 54, 189–196

    Article  PubMed  CAS  Google Scholar 

  44. Bulte, J.W., Zhang, S., van Gelderen, P., Herynek, V., Jordan, E.K., Duncan, I.D., and Frank, J. 1999 Neurotransplantation of magnetically labeled oligodendrocyte progenitors and magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. U.S.A. 96, 15256–15261

    Article  PubMed  CAS  Google Scholar 

  45. Weissleder, R., Moore, A., Mahmood, U., Bhorade, R., Benveniste, H., Chiocca, A. E., and Basilon, J.P. 2000 In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6,351–354

    Article  PubMed  CAS  Google Scholar 

  46. Modo, M., Hoehn, M., and Bulte, J.W. 2005 Cellular MR imaging. Mol. Imaging 4, 143–164

    PubMed  Google Scholar 

  47. Kim, D., Hong, K.S., and Song, J. 2007 The present status of cell tracking methods in animal models using magnetic resonance imaging technology. Mol. Cells 23, 132–137

    PubMed  CAS  Google Scholar 

  48. Nelson, R.M., Quie, P.G., and Simmons, R.L. 1975 Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 115, 1650–1663

    PubMed  CAS  Google Scholar 

  49. Rupnick, M.A., Stokes, C.L., Williams, S.K., and Lauffenburger, D.A. 1988 Quantitative analysis of random motility of human microvessel endothelial cells using a linear under-agarose assay. Lab Invest. 59, 363–372

    PubMed  CAS  Google Scholar 

  50. Maaser, K., Wolf, K., Klein, C.E., Niggermann, B., Zanker, K.S., Brocker, E.B., and Friedl, P. 1999 Functional hierarchy of simultaneously expressed adhesion receptors: integrin α2β1 but not CD44 mediates MV3 melanoma cell migration and reorganization within three-dimensional hyaluronan-containing collagen matrices. Mol. Biol. Cell 10, 3067–3079

    PubMed  CAS  Google Scholar 

  51. Knapp, D.M., Helou, E.F., and Tranquillo, R.T. 1999 A fibrin or collagen gel assay for tissue cell chemotaxis: assessment of fibroblast chemotaxis to GRGDSP. Exp. Cell Res. 247, 543–553

    Article  PubMed  CAS  Google Scholar 

  52. Gunzer, M., Friedl, P., Niggermann, B., Brocker, E.B., Kampgen, E., and Zanker, K.S. 2000 Migration of dendritic cells within 3-D collagen lattices is dependent on origin, state of maturation, and matrix structure and is maintained by proinflammatory cytokines. J. Leukoc. Biol. 67, 622–629

    PubMed  CAS  Google Scholar 

  53. Gotlieb, A.J., and Spector, W. 1981 Migration into an in vitro experimental wound. A comparison of porcine aortic endothelial and smooth muscle cells and the effect of culture irradiation. Am. J. Pathol. 103, 271–282

    PubMed  CAS  Google Scholar 

  54. Morla, A., Zhang, Z., Ruoslahti, E. 1994 Superfibronectin is a functionally different form of fibronectin. Nature 367, 193–196

    Article  PubMed  CAS  Google Scholar 

  55. Sapper, A., Wegener, J., and Janshoff, A. 2006 Cell motility probed by noise analysis of thickness shear mode resonators. Anal. Chem. 78, 5184–5191

    Article  PubMed  CAS  Google Scholar 

  56. You, J., Mastro, A.M., and Dong, C. 1999 Application of the dual-micropipet technique to the measurement of tumor cell locomotion. Exp. Cell Res. 248, 160–171

    Article  PubMed  CAS  Google Scholar 

  57. Grunwald, J. 1987 Time-lapse video microscopic analysis of cell proliferation, motility and morphology: application for cytopathology and pharmacology. Biotechniques 5, 680–687

    Google Scholar 

  58. Dickinson, R.B., McCarthy, J.B., and Tranquillo, R.T. 1993 Quantitative characterization of cell invasion in vitro: formulation and validation of a mathematical model of collagen gel invasion assay. Ann. Biomed. Eng. 21, 679–697

    Article  PubMed  CAS  Google Scholar 

  59. Perris, R., Kuo, H.-J., Glanville, R., Leibold, S., and Bronner-Fraser, M. 1993 Neural crest cell interaction with collagen type VI is mediated by cooperative interaction sites within triple-helix and globular domains. Exp. Cell Res., 209, 103–117

    Article  PubMed  CAS  Google Scholar 

  60. Moghe, P.V., Nelson, R.D., and Tranquillo, R.T. 1995 Cytokine-stimulated chemotaxis of human neutrophils in 3-D conjoined fibrin gel assay. J. Immunol. Methods 180, 193–211

    Article  PubMed  CAS  Google Scholar 

  61. Chon, J.H., Vizena, A.D., Rock, B.M., and Chaikof, E.L. 1997 Characterization of single-cell migration using a computer-aided fluorescence time-lapse videomicroscopy system. Anal. Biochem. 252, 246–254

    Article  PubMed  CAS  Google Scholar 

  62. Maede-Tollin, L.C., and van Noorden, C.J. 2000 Time lapse phase contrast video microscopy of directed cell migration of human microvascular endothelial cells on matrigel. Acta Histochem. 102, 299–307

    Article  Google Scholar 

  63. Friedl, P., and Wolf, K. 2003 Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374

    Article  PubMed  CAS  Google Scholar 

  64. Ballestrem, C., Wehrle-Haller, B., Hinz, B., Imhof, B.A. 2000 Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Mol. Biol. Cell. 11, 2999–3012

    PubMed  CAS  Google Scholar 

  65. Harvath, L., Falk, W., and Leonard, E.J. 1980 Rapid quantitation of neutrophil chemotaxis: use of a polyvinylpyrrolidone-free policarbonate membrane in a multiwell assembly. J. Immunol. Methods 37, 39–45

    Article  PubMed  CAS  Google Scholar 

  66. Sunder-Plassmann, G., Hofbauer, R., Sengolge, G., and Hore, W.H. 1996 Quantitation of leukocyte migration: improvement of a method. Immunol. Invest. 25, 49–63

    Article  PubMed  CAS  Google Scholar 

  67. Albini, A., Iwamoto, Y., Kleinman. H.K., Martin, G.R., Aaronson, S.A., Kozlowski, J.M., and McEwan, R.N. 1987 A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47, 3239–3245

    PubMed  CAS  Google Scholar 

  68. Repesh, L.A. 1989 A new in vitro assay for quantitating tumor cell invasion. Invasion Metastasis 9, 192–208

    PubMed  CAS  Google Scholar 

  69. Kleinman, H.K., McGarvey, M.L., Hassell, J.R., Star, V.L., Cannon, F.B., Laurie, G.W., and Martin, G.R. 1986 Basement membrane complexes with biological activity. Biochemistry 25, 312–318

    Article  PubMed  CAS  Google Scholar 

  70. Kedeshian, P., Sternlicht, M.D., Nguyen, M., Shao, Z.M., and Barsky, S.H. 1998 Humatrix, a novel myoepithelial matrical gel with unique biochemical and biological properties. Cancer Lett. 123, 215–226

    Article  PubMed  CAS  Google Scholar 

  71. Muir, D., Sukhu, L., Johnson, J., Lahorra, M.A., and Maria, B.L. 1993 Quantitative methods for scoring cell migration and invasion in filter-based assays. Anal. Biochem. 215, 104–109

    Article  PubMed  CAS  Google Scholar 

  72. Imamura, H., Takao, S., and Aikou, T. 1994 A modified invasion-3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay for quantitating tumor cell invasion. Cancer Res. 54, 3620–3624

    PubMed  CAS  Google Scholar 

  73. Schratzberger, P., Kahler, C.M., and Wiedermann, C.J. 1996 Use of fluorochromes in the determination of chemotaxis and haptotaxis of granulocytes by micropore filter assays. Ann. Hematol. 72, 23–27

    Article  PubMed  CAS  Google Scholar 

  74. Garrido, T., Riese, H.H., Quesada, A.R., Mar Barbacid, M., and Aracil, M. 1996 Quantitative assay for cell invasion using the fluorogenic substrate 2’,7’-bis(2-carboxyethyl)-5(and-6)-carboxyfluorescein acetoxymethylester. Anal. Biochem. 235, 234–236

    Article  PubMed  CAS  Google Scholar 

  75. Godement, P., Vanselow, J., Thanos, S., and Bonhoeffer, F. 1987 A study in developing visual system with a new method of staining neurons and their processes in fixed tissue. Development 101, 697–713

    PubMed  CAS  Google Scholar 

  76. Ragnarson, B., Bengtsson, L., and Haegerstrand, A. 1992 Labeling with fluorescent carbocyanine dyes of cultured endothelial and smooth muscle cells by growth in dye-containing medium. Histochemistry 97, 329–333

    Article  PubMed  CAS  Google Scholar 

  77. Mazzucato, M., Cozzi, M.R., Pradella, P., Ruggeri, Z.M., and De Marco, L. 2004 Distinct roles of ADP receptors in von Willebrand factor-mediated platelet signaling and activation under flow. Blood 104, 3221–3227

    Article  PubMed  CAS  Google Scholar 

  78. Alevriadou, B.R., Moake, J.L., Turner, N.A., Ruggeri, Z.M., Folie, B.J., Phillips, M.D., Schreiber, A.B., Hrinda, M.E., and McIntire, L.V. 1993 Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 81, 1263–76

    PubMed  CAS  Google Scholar 

  79. Perris, R., Krotoski, D., and Bronner-Fraser, M. 1991 Collagens in avian neural crest development: Distribution in vivo and migration-promoting ability in vivo. Development 113, 969–984

    PubMed  CAS  Google Scholar 

  80. Turley, E.A., Erickson, C.A., and Tucker, R.P. 1985 The retention and ultrastructural appearances of various extracellular matrix molecules incorporated into three-dimensional hydrated collagen lattices. Dev. Biol. 109, 347–369

    Article  PubMed  CAS  Google Scholar 

  81. Kim, B.S., and Mooney, D.J. 1998 Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 16, 224–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the Italian Ministry of Health and the Italian Ministry of University, Associazione Italiana per la Ricerca sul Cancro (AIRC), ABO Project 2010, Mizutani Glycoscience Foundation (Japan) and research funds from the University of Parma. We are also grateful to a number of collaborators that during the years have assisted us in the development and refinement of the cell adhesion and migration assays described in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Perris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Spessotto, P., Lacrima, K., Nicolosi, P., Pivetta, E., Scapolan, M., Perris, R. (2009). Fluorescence-Based Assays for In Vitro Analysis of Cell Adhesion and Migration. In: Even-Ram, S., Artym, V. (eds) Extracellular Matrix Protocols. Methods in Molecular Biology, vol 522. Humana Press. https://doi.org/10.1007/978-1-59745-413-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-413-1_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-984-0

  • Online ISBN: 978-1-59745-413-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics