Skip to main content

A Case Study for Plant-Made Pharmaceuticals Comparing Different Plant Expression and Production Systems

  • Protocol
Recombinant Proteins From Plants

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 483))

Summary

Over the last decade, plant-based production of pharmaceuticals has made remarkable progress as the expression of a diverse set of proteins has been demonstrated in a range of plant crops. Although the commercial exploitation is still pending, today various plant-based expression technologies have reached significant milestones through clinical testing in humans. Each of the protein manufacturing platforms in plants has specific benefits and drawbacks. We have engaged in comparing some of these production systems with respect to their performance: protein yield and quality. Using a specific tester protein (aprotinin), it was shown that functional aprotinin can be manufactured in plants in substantial amounts, as illustrated in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer, R., Stoger, E., Schillberg, S., Christou, P., and Twyman, R.M. (2004). Plantbased production of biopharmaceuticals. Curr. Opin. Plant Biol. 7, 152–158.

    Article  CAS  PubMed  Google Scholar 

  2. Kermode, A.R. (2006). Plants as factories for production of biopharmaceutical and bioindustrial proteins: lessons from cell biology. Can. J. Bot. 84, 679–694.

    Article  CAS  Google Scholar 

  3. Stoger, E., Ma, J.K.-C, Fischer, R, and Christou, P. (2005). Sowing the seeds of success: pharmaceutical proteins. Curr. Opin. Biotechnol. 16, 167–173.

    Article  CAS  PubMed  Google Scholar 

  4. Hewlett, G. (1990). Apropos aprotinin: a review. Biotechnology 8, 565–568.

    Article  CAS  PubMed  Google Scholar 

  5. Apeler, H., Peters, J., Schröder, W., Schneider, K.-H., Lemm, G., Hinz, V., Rossouw, G.J., and Dembowsky, K. (2004). Expression, purification, biochemical and pharmacological characterization of a recombinant aprotinin variant. Arzneim.-Forsch./Drug Res. 54(8), 483–497.

    CAS  Google Scholar 

  6. Azzoni, A.R, Kusnadi, A.R., Miranda, E.A., and Nikolov, Z.L. (2002). Recombinant aprotinin produced in transgenic corn seed: extraction and purification studies. Biotechnol. Bioeng. 80(3), 268–276.

    Article  CAS  Google Scholar 

  7. Svab, Z., and Maliga, P. (1993). High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90(3), 913–917.

    Article  CAS  PubMed  Google Scholar 

  8. Staub, J.M., Garcia, B., Graves, J., Hajdukiewicz, P.T., Hunter, P., Nehra, N., Paradkar, V., Schlittler, M., Carroll, J.A., Spatola, L., Ward, D., Ye, G., and Russel, DA. (2000). High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechnol. 18(3), 333–338.

    Article  CAS  PubMed  Google Scholar 

  9. Rival, S., Wisniewski, J.-P., Langlais, A., Kaplan, H., Freyssinet, G., Vancanneyt, G., Vunsh, R., Perl, A., and Edelman, M. (2007). Spirodela (duckweed) as alternative production system for pharmaceuticals: a case study, aprotinin. Transgenic Res. 17(4), 503–513.

    Article  PubMed  Google Scholar 

  10. Zhong, G.-Y., Peterson, D., Delaney, D.E., Bailey, M., Witcher, D.R, Register, J.C., III, Bond, D., Li, C.-P., Marshall, L., Kulisek, E., Ritland, D., Meyer, T., Hood, E.E., and Howard, J.A. (1999). Commercial production of aprotinin in transgenic seeds. Mol. Breed. 5(4), 345–356.

    Article  CAS  Google Scholar 

  11. Delaney, D., Jilka, J., Barker, D., Irwin, P., Poage, M., Woodard, S., Horn, M., Vinas, A., Beifuss, K., Barker, M., Wiggins, B., Drees, C, Harkey, R, Nikolov, Z., Hood, E., and Howard, J. (2002). Production of aprotinin in transgenic maize seeds for the pharmaceutical and cell culture markets. In: Vasil, I.K. (ed.) Plant biotechnology 2002 and beyond. Kluwer, Dordrecht, pp. 393–394.

    Google Scholar 

  12. Vojdani, F.S., Palmer, K.E., Garger, S.J., and Pogue, G.P. (2006). Plant produced recombinant aprotinin and aprotinin variants. Patent application US2006/0218667 A1.

    Google Scholar 

  13. Marillonnet, S., Thoeringer, C, Kandzia, R., Klimyuk, V., and Gleba, Y. (2005). Systemic Agrobacterium tumefaciensmediated transfection of viral replicons for efficient transient expression in plants. Nat. Biotechnol. 23(6), 718–723.

    Article  CAS  PubMed  Google Scholar 

  14. Giritch, A., Marillonnet, S., Engler, C, van Eldik, G., Botterman, J., Klimyuk, V., and Gleba, Y. (2006). Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc. Natl. Acad. Sci. USA 103(40), 14701–6.

    Article  CAS  PubMed  Google Scholar 

  15. Azzoni, A.R., Takahashi, K., Woodard, S.L., Miranda, E.A., and Nikolov, Z.L. (2005). Purification of recombinant aprotinin produced in trans genic corn seed: separation from CTI utilizing ion-exchange chromatography. Braz. J. Chem. Eng. 22 (3), 323–330.

    Article  CAS  Google Scholar 

  16. Rivard, D., Anguenot, R., Brunelle, F., Quy Le, V., Vezina, L.-P., Trépanier, S., and Michaud, D. (2006). An in-built proteinase inhibitor system for the protection of recombinant proteins recovered from transgenic plants. Plant Biotechnol. 4, 359–368.

    Article  CAS  Google Scholar 

  17. Kassel, B., and Laskowski, M. (1965). The basic trypsin inhibitor of bovine pancreas. V. The disulfide linkages. Biochem. Biophys. Res. Commun. 20, 463–468.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vancanneyt, G., Dubald, M., Schröder, W., Peters, J., Botterman, J. (2009). A Case Study for Plant-Made Pharmaceuticals Comparing Different Plant Expression and Production Systems. In: Faye, L., Gomord, V. (eds) Recombinant Proteins From Plants. Methods in Molecular Biology™, vol 483. Humana Press. https://doi.org/10.1007/978-1-59745-407-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-407-0_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-978-9

  • Online ISBN: 978-1-59745-407-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics