Skip to main content

Transgenic Wheat, Barley and Oats: Production and Characterization

  • Protocol
  • First Online:
Transgenic Wheat, Barley and Oats

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 478))

Abstract

Ever since the first developments in plant transformation technology using model plant species in the early 1980s, there has been a body of plant science research devoted to adapting these techniques to the transformation of crop plants. For some crop species progress was relatively rapid, but in other crop groups such as the small grain cereals, which were not readily amenable to culture in vitro and were not natural hosts to Agrobacterium, it has taken nearly two decades to develop reliable and robust transformation methods.

In the following chapters of this book, transformation procedures for small grain cereals are presented, together with methods for gene and protein expression and the characterization of transgenic plants. In this introductory chapter we try to put these later chapters into context, giving an overview of the development of transformation technology for small grain cereals, discussing some of the pros and cons of the techniques and what limitations still exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein, T. M., Wolf, E. D., Wu, R. and Sanford, J. C. (1987) High-velocity microprojectiles for delivering nucleic-acids into living cells. Nature 327,70–73.

    Article  CAS  Google Scholar 

  2. Gordonkamm, W. J., Spencer, T. M., Mangano, M. L., Adams, T. R., Daines, R. J., Start, W. G., Obrien, J. V., Chambers, S. A., Adams, W. R., Willetts, N. G., Rice, T. B., Mackey, C. J., Krueger, R. W., Kausch, A. P. and Lemaux, P. G. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2,603–618.

    Article  CAS  Google Scholar 

  3. Gheysen, G., Angenon, G. and Van Montagu, M. (1998) Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications in transgenic plant researchLindsey, K., in Transgenic Plant ResearchHarwood Academic, The Netherlands, pp. 1–33.

    Google Scholar 

  4. Potrykus, I. (1990) Gene transfer to cereals – an assessment. Bio-Technology 8,535–542.

    CAS  Google Scholar 

  5. Lazzeri, P. A. and Shewry, P. R. (1993) Biotechnology of cereals. Biotechnol Genetic Eng. Rev 11,79–146.

    CAS  Google Scholar 

  6. Barcelo, P. and Lazzeri, P. (1998) Lindsey, K., Direct gene transfer: chemical, electrical and physical methods, in Transgenic Plant Research,Harwood Academic, The Netherlands, pp. 35–55.

    Google Scholar 

  7. Finer, J. J., Finer, K. R. and Ponappa, T. (1999) Particle bombardment mediated transformation, Hammond, J., Mcgarvey, P., and Yusibov, V., in Plant BiotechnologyVol240Springer-Verlag, New York, pp. 59–80.

    Google Scholar 

  8. Kikkert, J. R. (1993) The Biolistic(R) Pds-1000 He Device. Plant Cell Tissue and Organ Cult. 33,221–226.

    Article  CAS  Google Scholar 

  9. Mendel, R. R., Muller, B., Schulze, J., Kolesnikov, V. and Zelenin, A. (1989) Delivery of foreign genes to intact barley cells by high-velocity microprojectiles. Theor. ApplGenet 78,31–34.

    Article  CAS  Google Scholar 

  10. Kartha, K. K., Chibbar, R. N., Georges, F., Leung, N., Caswell, K., Kendall, E. and Qureshi, J. (1989) Transient expression of chloramphenicol acetyltransferase (cat) gene in barley cell-cultures and immature embryos through microprojectile bombardment. Plant Cell Rep. 8,429–432.

    Article  CAS  Google Scholar 

  11. Vasil, V., Brown, S. M., Re, D., Fromm, M. E. and Vasil, I. K. (1991) Stably transformed callus lines from microprojectile bombardment of cell-suspension cultures of wheat. Bio-Technology 9,743–747.

    CAS  Google Scholar 

  12. Vasil, V., Castillo, A. M., Fromm, M. E. and Vasil, I. K. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio-Technology 10,667–674.

    CAS  Google Scholar 

  13. Nehra, N. S., Chibbar, R. N., Leung, N., Caswell, K., Mallard, C., Steinhauer, L., Baga, M. and Kartha, K. K. (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5,285–297.

    Article  CAS  Google Scholar 

  14. Weeks, J. T., Anderson, O. D. and Blechl, A. E. (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum) Plant Physiol. 102,1077–1084.

    CAS  Google Scholar 

  15. Becker, D., Brettschneider, R. and Lorz, H. (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5,299–307.

    Article  CAS  Google Scholar 

  16. Wan, Y. C. and Lemaux, P. G. (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104,37–48.

    CAS  Google Scholar 

  17. Hagio, T., Hirabayashi, T., Machii, H. and Tomotsune, H. (1995) Production of fertile transgenic barley Hordeum vulgare. L.) plant using the hygromycin-resistance marker Plant Cell Rep. 14,329–334.

    Article  CAS  Google Scholar 

  18. Ritala, A., Aspegren, K., Kurten, U., Salmenkalliomarttila, M., Mannonen, L., Hannus, R., Kauppinen, V., Teeri, T. H. and Enari, T. M. (1994) Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol. Biol 24,317–325.

    Article  CAS  Google Scholar 

  19. Jahne, A., Becker, D., Brettschneider, R. and Lorz, H. (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor. Appl Genet 89,525–533.

    Article  Google Scholar 

  20. He, G. Y., Rooke, L., Steele, S., Bekes, F., Gras, P., Tatham, A. S., Fido, R., Barcelo, P., Shewry, P. R. and Lazzeri, P. A. (1999) Transformation of pasta wheat (Triticum turgidum L. var. durum) with high-molecular-weight glutenin subunit genes and modification of dough functionality Mol Breed. 5,377–386.

    Article  CAS  Google Scholar 

  21. Folling, L. and Olesen, A. (2001) Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment Plant Cell Rep. 20,629–636.

    Article  CAS  Google Scholar 

  22. Barcelo, P., Hagel, C., Becker, D., Martin, A. and Lorz, H. (1994) Transgenic cereal (Tritordeum) plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. Plant J. 5,583–592.

    Article  CAS  Google Scholar 

  23. Cho, M. J., Jiang, W. and Lemaux, P. G. (1999) High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures. Plant Sci. 148,9–17.

    Article  CAS  Google Scholar 

  24. Torbert, K. A., Rines, H. W. and Somers, D. A. (1998) Transformation of oat using mature embryo-derived tissue cultures. Crop Sci. 38,226–231.

    Article  Google Scholar 

  25. Gless, C., Lorz, H. and Jahne-Gartner, A. (1998) Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments. J. Plant Physiol 152,151–157.

    CAS  Google Scholar 

  26. Zhang, S., Cho, M. J., Koprek, T., Yun, R., Bregitzer, P. and Lemaux, P. G. (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings Plant Cell Rep. 18,959–966.

    Article  CAS  Google Scholar 

  27. Altpeter, F., Vasil, V., Srivastava, V., Stoger, E. and Vasil, I. K. (1996) Accelerated production of transgenic wheat (Triticum aestivum L) plants Plant Cell Rep. 16,12–17.

    Article  CAS  Google Scholar 

  28. Barro, F., Cannell, M. E., Lazzeri, P. A. and Barcelo, P. (1998) The influence of auxins on transformation of wheat and Tritordeum and analysis of transgene integration patterns in transformants. Theor. ApplGenet 97,684–695.

    Article  CAS  Google Scholar 

  29. Harwood, W. A., Ross, S. M., Cilento, P. and Snape, J. W. (2000) The effect of DNA/gold particle preparation technique, and particle bombardment device, on the transformation of barley (Hordeum vulgare). Euphytica 111, 67–76.

    Google Scholar 

  30. Rasco-Gaunt, S., Riley, A., Barcelo, P. and Lazzeri, P. A. (1999) Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep. 19,118–127.

    Article  CAS  Google Scholar 

  31. Zhou, H., Arrowsmith, J. W., Fromm, M. E., Hironaka, C. M., Taylor, M. L., Rodriguez, D., Pajeau, M. E., Brown, S. M., Santino, C. G. and Fry, J. E. (1995) Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 15,159–163.

    CAS  Google Scholar 

  32. Reed, J., Privalle, L., Powell, M. L., Meghji, M., Dawson, J., Dunder, E., Suttie, J., Wenck, A., Launis, K., Kramer, C., Chang, Y. F., Hansen, G. and Wright, M. (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell DevelopBiol-Plant 37,127–132.

    Article  CAS  Google Scholar 

  33. Koprek, T., Hansch, R., Nerlich, A., Mendel, R. R. and Schulze, J. (1996) Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue response. Plant Sci. 119,79–91.

    Article  CAS  Google Scholar 

  34. Rasco-Gaunt, S., Riley, A., Cannell, M., Barcelo, P. and Lazzeri, P. A. (2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment J ExpBot. 52,865–874.

    CAS  Google Scholar 

  35. Smith, E. F. and Townsend, C. O. (1907) A plant tumor of bacterial origin. Science 25,671–673.

    Article  CAS  Google Scholar 

  36. Chilton, M. D., Drummond, M. H., Merlo, D. J., Sciaky, D., Montoya, A. L., Gordon, M. P. and Nester, E. W. (1977) Stable incorporation of plasmid DNA into higher plant-cells – molecular-basis of crown gall tumorigenesis. Cell 11,263–271.

    Article  CAS  Google Scholar 

  37. Escobar, M. A. and Dandekar, A. M. (2003) Agrobacterium tumefaciens as an agent of disease Trends Plant Sci. 8,380–386.

    Article  CAS  Google Scholar 

  38. Gelvin, S. B. (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration Ann. RevPlant PhysiolPlant MolBiol 51,223–256.

    Article  CAS  Google Scholar 

  39. Zambryski, P. C. (1992) Chronicles from the Agrobacterium plant cell-DNA ransfer story Ann. RevPlant PhysiolPlant MolBiol 43,465–490.

    Article  CAS  Google Scholar 

  40. Hooykaas, P. J. J. and Schilperoort, R. A. (1992) Agrobacterium and plant genetic engineering Plant Mol. Biol 19,15–38.

    Article  CAS  Google Scholar 

  41. Deframond, A. J., Barton, K. A. and Chilton, M. D. (1983) Mini-Ti – a new vector strategy for plant genetic engineering. Bio-Technology 1,262–269.

    Google Scholar 

  42. Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J. and Schilperoort, R. A. (1983) A binary plant vector strategy based on separation of Vir- region and T-region of the Agrobacterium tumefaciens Ti-plasmid Nature 303,179–180.

    Article  CAS  Google Scholar 

  43. Bevan, M. (1984) Binary Agrobacterium vectors for plant transformation Nucleic Acids Res. 12,8711–8721.

    Article  CAS  Google Scholar 

  44. Zambryski, P., Joos, H., Genetello, C., Leemans, J., Vanmontagu, M. and Schell, J. (1983) Ti-plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2,2143–2150.

    CAS  Google Scholar 

  45. Simoens, C., Alliotte, T., Mendel, R., Muller, A., Schiemann, J., Vanlijsebettens, M., Schell, J., Vanmontagu, M. and Inze, D. (1986) A binary vector for transferring genomic libraries to plants. Nucleic Acids Res. 14,8073–8090.

    Article  CAS  Google Scholar 

  46. An, G., Watson, B. D., Stachel, S., Gordon, M. P. and Nester, E. W. (1985) New cloning vehicles for transformation of higher-plants. EMBO J. 4,277–284.

    CAS  Google Scholar 

  47. Fraley, R. T., Rogers, S. G., Horsch, R. B., Eichholtz, D. A., Flick, J. S., Fink, C. L., Hoffmann, N. L. and Sanders, P. R. (1985) The SEV system – a new disarmed ti-plasmid vector system for plant transformation. Bio-Technology 3,629–635.

    CAS  Google Scholar 

  48. Hernalsteens, J. P., Vanvliet, F., Debeuckeleer, M., Depicker, A., Engler, G., Lemmers, M., Holsters, M., Vanmontagu, M. and Schell, J. (1980) The Agrobacterium tumefaciens ti plasmid as a host vector system for introducing foreign DNA in plant-cells Nature 287,654–656.

    Article  CAS  Google Scholar 

  49. Marton, L., Wullems, G. J., Molendijk, L. and Schilperoort, R. A. (1979) In vitro. transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens Nature 277,129–131.

    Article  Google Scholar 

  50. Herrera-Estrella, L., Deblock, M., Messens, E., Hernalsteens, J. P., Vanmontagu, M. and Schell, J. (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2,987–995.

    CAS  Google Scholar 

  51. Bevan, M. W., Flavell, R. B. and Chilton, M. D. (1983) A chimaeric antibiotic-resistance gene as a selectable marker for plant-cell transformation. Nature 304,184–187.

    Article  CAS  Google Scholar 

  52. Davey, M. R., Cocking, E. C., Freeman, J., Pearce, N. and Tudor, I. (1980) Transformation of petunia protoplasts by isolated Agrobacterium plasmids Plant Sci. Lett 18,307–313.

    Article  CAS  Google Scholar 

  53. Krens, F. A., Molendijk, L., Wullems, G. J. and Schilperoort, R. A. (1982) In vitro transformation of plant protoplasts with ti-plasmid DNA Nature 296,72–74.

    Article  CAS  Google Scholar 

  54. Herrera-Estrella, L., Depicker, A., Vanmontagu, M. and Schell, J. (1983) Expression of chimaeric genes transferred into plant-cells using a ti-plasmid-derived vector. Nature 303,209–213.

    Article  CAS  Google Scholar 

  55. Horsch, R. B., Fraley, R. T., Rogers, S. G., Sanders, P. R., Lloyd, A. and Hoffmann, N. (1984) Inheritance of functional foreign genes in plants. Science 223,496–498.

    Article  CAS  Google Scholar 

  56. Deblock, M., Herreraestrella, L., Vanmontagu, M., Schell, J. and Zambryski, P. (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J. 3,1681–1689.

    CAS  Google Scholar 

  57. Gasser, C. S. and Fraley, R. T. (1989) Genetically engineering plants for crop improvement. Science 244,1293–1299.

    Article  CAS  Google Scholar 

  58. Bytebier, B., Deboeck, F., Degreve, H., Vanmontagu, M. and Hernalsteens, J. P. (1987) T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis P NASUSA 84,5345–5349.

    Article  CAS  Google Scholar 

  59. Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA Plant J. 6,271–282.

    Article  CAS  Google Scholar 

  60. Chan, M. T., Chang, H. H., Ho, S. L., Tong, W. F. and Yu, S. M. (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter beta-glucuronidase gene Plant Mol. Biol 22,491–506.

    Article  CAS  Google Scholar 

  61. Gould, J., Devey, M., Hasegawa, O., Ulian, E. C., Peterson, G. and Smith, R. H. (1991) Transformation of Zea mays. L. using Agrobacterium tumefaciens and the shoot apex Plant Physiol. 95,426–434.

    Article  CAS  Google Scholar 

  62. Smith, R. H. and Hood, E. E. (1995) Agrobacterium tumefaciens transformation of monocotyledons Crop Sci. 35,301–309.

    Article  Google Scholar 

  63. Cheng, M., Lowe, B. A., Spencer, T. M., Ye, X. D. and Armstrong, C. L. (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species In Vitro Cell DevelopBiol-Plant 40,31–45.

    Article  Google Scholar 

  64. Brunaud, W., Balzergue, S., Dubreucq, B., Aubourg, S., Samson, F., Chauvin, S., Bechtold, N., Cruaud, C., DeRose, R., Pelletier, G., Lepiniec, L., Caboche, M. and Lecharny, A. (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep. 3,1152–1157.

    Article  CAS  Google Scholar 

  65. Valentine, L. (2003) Agrobacterium tumefaciens and the plant: The David and Goliath of modern genetics Plant Physiol. 133,948–955.

    Article  CAS  Google Scholar 

  66. Kohli, A., Twyman, R. M., Abranches, R., Wegel, E., Stoger, E. and Christou, P. (2003) Transgene integration, organization and interaction in plants. Plant Mol. Biol 52,247–258.

    Article  CAS  Google Scholar 

  67. Bajaj, S. and Mohanty, A. (2005) Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotech. J 3,275–307

    Article  CAS  Google Scholar 

  68. Shrawat, A. K. and Lorz, H. (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers Plant Biotech. J 4,575–603.

    Article  CAS  Google Scholar 

  69. Gelvin, S. B. (2003) Agobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool Microbiol. MolBiolRev 67,16–37

    CAS  Google Scholar 

  70. Jones, H. D. (2005) Wheat transformation: current technology and applications to grain development and composition. J. Cereal Sci 41,137–147.

    Article  CAS  Google Scholar 

  71. Dai, S. H., Zheng, P., Marmey, P., Zhang, S. P., Tian, W. Z., Chen, S. Y., Beachy, R. N. and Fauquet, C. (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment Mol. Breed 7,25–33.

    Article  CAS  Google Scholar 

  72. Travella, S., Ross, S. M., Harden, J., Everett, C., Snape, J. W. and Harwood, W. A. (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques Plant Cell Rep. 23,780–789.

    Article  CAS  Google Scholar 

  73. Shou, H. X., Frame, B. R., Whitham, S. A. and Wang, K. (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation Mol. Breed 13,201–208.

    Article  CAS  Google Scholar 

  74. Wu, H., Sparks, C., Amoah, B. and Jones, H. D. (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat Plant Cell Rep. 21,659–668.

    CAS  Google Scholar 

  75. Wu, H., Sparks, C. A. and Jones, H. D. (2006) Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation Mol. Breed 18,195–208.

    Article  CAS  Google Scholar 

  76. Cheng, M., Fry, J. E., Pang, S. Z., Zhou, H. P., Hironaka, C. M., Duncan, D. R., Conner, T. W. and Wan, Y. C. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens Plant Physiol. 115,971–980.

    CAS  Google Scholar 

  77. Cheng, M., Hu, T. C., Layton, J., Liu, C. N. and Fry, J. E. (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat In Vitro Cell DevelopBiol-Plant 39,595–604.

    Article  CAS  Google Scholar 

  78. Hu, T., Metz, S., Chay, C., Zhou, H. P., Biest, N., Chen, G., Cheng, M., Feng, X., Radionenko, M., Lu, F. and Fry, J. (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection Plant Cell Rep. 21,1010–1019.

    Article  CAS  Google Scholar 

  79. Rooke, L., Steele, S. H., Barcelo, P., Shewry, P. R. and Lazzeri, P. A. (2003) Transgene inheritance, segregation and expression in bread wheat. Euphytica 129,301–309.

    Article  CAS  Google Scholar 

  80. Howarth, J. R., Jacquet, J. N., Doherty, A., Jones, H. D. and Cannell, M. E. (2005) Molecular genetic analysis of silencing in two lines of Triticum aestivum transformed with the reporter gene construct pAHC25 Annals Appl. Biol 146,311–320.

    Article  CAS  Google Scholar 

  81. Makarevitch, I., Svitashev, S. K. and Somers, D. A. (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol. Biol 52,421–432.

    Article  CAS  Google Scholar 

  82. Svitashev, S. K., Pawlowski, W. P., Makarevitch, I., Plank, D. W. and Somers, D. A. (2002) Complex transgene locus structures implicate multiple mechanisms for plant transgene rearrangement. Plant J. 32,433–445.

    Article  CAS  Google Scholar 

  83. Lange, M., Vincze, E., Moller, M. G. and Holm, P. B. (2006) Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation Plant Cell Rep. 25,815–820.

    Article  CAS  Google Scholar 

  84. Kim, S. R., Lee, J., Jun, S. H., Park, S., Kang, H. G., Kwon, S. and An, G. (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol. Biol 52,761–773.

    Article  CAS  Google Scholar 

  85. Afolabi, A. S., Worland, B., Snape, J. W. and Vain, P. (2004) A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor. ApplGenet 109,815–826.

    Article  CAS  Google Scholar 

  86. Vain, P., Afolabi, A. S., Worland, B. and Snape, J. W. (2003) Transgene behaviour in populations of rice plants transformed using a new dual binary vector system: pGreen/pSoup. Theor. ApplGenet 107,210–217.

    Article  CAS  Google Scholar 

  87. Kuraya, Y., Ohta, S., Fukuda, M., Hiei, Y., Murai, N., Hamada, K., Ueki, J., Imaseki, H. and Komari, T. (2004) Suppression of transfer of non-T-DNA ‘vector backbone’ sequences by multiple left border repeats in vectors for transformation of higher plants mediated by Agrobacterium tumefaciens Mol. Breed 14,309–320.

    Article  Google Scholar 

  88. Fu, X. D., Duc, L. T., Fontana, S., Bong, B. B., Tinjuangjun, P., Sudhakar, D., Twyman, R. M., Christou, P. and Kohli, A. (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgen. Res 9,11–19.

    Article  CAS  Google Scholar 

  89. Agrawal, P. K., Kohli, A., Twyman, R. M. and Christou, P. (2005) Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol. Breed 16,247–260.

    Article  CAS  Google Scholar 

  90. Altpeter, F., Baisakh, N., Beachy, R., Bock, R., Capell, T., Christou, P., Daniell, H., Datta, K., Datta, S., Dix, P. J., Fauquet, C., Huang, N., Kohli, A., Mooibroek, H., Nicholson, L., Nguyen, T. T., Nugent, G., Raemakers, K., Romano, A., Somers, D. A., Stoger, E., Taylor, N. and Visser, R. (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol. Breed 15,305–327.

    Article  Google Scholar 

  91. Feldmann, K. A. and Marks, M. D. (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana – a non-tissue culture approach Mol. GenGenet 208,1–9.

    Article  CAS  Google Scholar 

  92. Bechtold, N., Ellis, J. and Pelletier, G. (1993) In planta Agrobacterium-mediated Ge.e-transfer by infiltration of adult Arabidopsis thaliana plants Comptes Rendus De L Academie Des Sciences Serie Iii-Sciences De La Vie-Life Sciences 316,1194–1199.

    CAS  Google Scholar 

  93. Craze, M. and Risacher, T. (2000) Plant Transformation Method. Patent No. WO 00/63398.

    Google Scholar 

  94. Zale, J. M. and Steber, C. M. (2006) In planta, Jan transformation of wheat as a genomics tool, in Proceedings of the Plant and Animal Genomics XIV ConferenceSan Diego, USA.14–18,2006,

    Google Scholar 

  95. Supartana, P., Shimizu, T., Nogawa, M., Shioiri, H., Nakajima, T., Haramoto, N., Nozue, M. and Kojima, M. (2006) Development of simple and efficient in Planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens J. BiosciBioeng 102,162–170.

    CAS  Google Scholar 

  96. Taguchi-Shiobara, F., Yamamoto, T., Yano, M. and Oka, S. (2006) Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor. ApplGenet 112,968–976.

    Article  CAS  Google Scholar 

  97. Krakowsky, M. D., Lee, M., Garay, L., Woodman-Clikeman, W., Long, M. J., Sharopova, N., Frame, B. and Wang, K. (2006) Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.) Theor. ApplGenet 113,821–830.

    Article  CAS  Google Scholar 

  98. Nishimura, A., Ashikari, M., Lin, S., Takashi, T., Angeles, E. R., Yamamoto, T. and Matsuoka, M. (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. P NASUSA 102,11940–11944.

    Article  CAS  Google Scholar 

  99. Che, P., Lall, S., Nettleton, D. and Howell, S. H. (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol. 141,620–637.

    Article  CAS  Google Scholar 

  100. DeCook, R., Lall, S., Nettleton, D. and Howell, S. H. (2006) Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 172,1155–1164.

    Article  CAS  Google Scholar 

  101. Che, P., Love, T. M., Frame, B. R., Wang, K., Carriquiry, A. L. and Howell, S. H. (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol. Biol 62,1–14

    Article  CAS  Google Scholar 

  102. Joint FAO/WHO Consultation on the Assessment of Biotechnology in Food Production and Processing as Related to Food Safety (1990) Geneva S, Strategies for assessing the safety of foods produced by biotechnology: report of a joint FAO/WHO consultation, Geneva, 5–10 November 1990.

    Google Scholar 

  103. OECD (1993) Organisation for Economic Co-operation and Development. Safety Evaluation of Foods Derived by Modern Biotechnology – Concepts and Principles, OECD, Paris.

    Google Scholar 

  104. Kuiper, H. A., Kleter, G. A., Noteborn, H. and Kok, E. J. (2001) Assessment of the food safety issues related to genetically modified foods. Plant J. 27,503–528.

    Article  CAS  Google Scholar 

  105. Konig, A., Cockburn, A., Crevel, R. W. R., Debruyne, E., Grafstroem, R., Hammerling, U., Kimber, I., Knudsen, I., Kuiper, H. A., Peijnenburg, A., Penninks, A. H., Poulsen, M., Schauzu, M. and Wal, J. M. (2004) Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem. Toxicol 42,1047–1088.

    Article  CAS  Google Scholar 

  106. Levidow, L., Murphy, J. and Carr, S. (2007) Recasting “substantial equivalence”: transatlantic governance of GM food. Science Technol Human Values 32,53–91

    Google Scholar 

  107. Baker, J. M., Hawkins, N. D., Ward, J. L., Lovegrove, A., Napier, J. A., Shewry, P. R. and Beale, M. H. (2006) A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotech. J 4,381–392.

    Article  CAS  Google Scholar 

  108. Manetti, C., Bianchetti, C., Bizzari, M., Casciani, L., Castro, C., D’Ascenzo, G., Delfini, M., Di Cocco, M. E., Lagana, A., Miccheli, A., Motto, M. and Conti, F. (2004) NMR-based metabonomic study of transgenic maize. Phytochem. 65,3187–3198.

    Article  CAS  Google Scholar 

  109. Herman, R. A., Storer, N. P., Phillips, A. M., Prochaska, L. M. and Windels, P. (2007) Compositional assessment of event DAS-59122-7 maize using substantial equivalence. Regul. ToxicolPharmacol 47,37–47.

    Article  CAS  Google Scholar 

  110. Oberdoerfer, R. B., Shillito, R. D., De Beuckeleer, M. and Mitten, D. H. (2005) Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the nontransgenic counterpart J. AgrFood Chem 53,1457–1465.

    Article  CAS  Google Scholar 

  111. Miki, B. and McHugh, S. (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol 107,193–232.

    Article  CAS  Google Scholar 

  112. Wilmink, A. and Dons, J. J. M. (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol. BiolReport 11,165–185.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huw D. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lazzeri*, P., Jones, H. (2009). Transgenic Wheat, Barley and Oats: Production and Characterization. In: Jones, H., Shewry, P. (eds) Transgenic Wheat, Barley and Oats. Methods in Molecular Biology™, vol 478. Humana Press. https://doi.org/10.1007/978-1-59745-379-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-379-0_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-961-1

  • Online ISBN: 978-1-59745-379-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics