Skip to main content

Cryopreservation of Plant Cell Suspensions

  • Protocol
Cryopreservation and Freeze-Drying Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 368))

Abstract

The cryopreservation of dedifferentiated cells, grown in suspension culture, is one of the portfolio of techniques employed for the long-term conservation of higher plant germplasm. Suspension cultures are also important in biotechnology, particularly in transformation studies and for the production of specific metabolites, and, here, there is also a pressing need for genetically stable, long-term storage of cell lines.

Cryopreservation of suspension cell cultures can be exploited by either slow, or rapid, cooling techniques. During slow cooling the extracellular solutions are nucleated and the cells cryodehydrate during controlled cooling as a consequence of extracellular ice, to the point where their intracellular fluids will vitrify on subsequent transfer to liquid nitrogen. In the rapid cooling protocols, the cells are prepared by extreme osmotic dehydration, with cryoprotection, before plunging the samples directly into liquid nitrogen to achieve vitrification. Extensive success has been achieved with both techniques but rapid cooling is, currently, widely favored because of its simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ye, M., Ning, L., Zhan, J., Guo, H., and Guo, D. (2003) Biotransformation of cinobufagin by cell suspension cultures of Catharanthus roseus and Platycodon grandiflorum. J. Molecular Catalysis B: Enzymatic 22, 89–95.

    Article  Google Scholar 

  2. Fuentes, A., Ramos, P. L., Ayra, C., Rodríguez, M., Ramírez, N., and Pujol, M. (2004) Development of a highly efficient system for assessing recombinant gene expression in plant cell suspensions via Agrobacterium tumefaciens transformation. Biotechnol. Appl. Biochem. 39, 355–361.

    Article  CAS  Google Scholar 

  3. Wang, Q., Li, P., Hanania, U., et al. (2005) Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Plant Science 168, 565–571.

    Article  CAS  Google Scholar 

  4. Shiba, T. and Mii, M. (2005) Agrobacterium tumefaciens-mediated transformation of highly regenerable cell suspension cultures in Dianthus acicularis. J. Hort. Sci. Biotechnol. 80, 393–398.

    CAS  Google Scholar 

  5. Huang, X. and Wei, Z. (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tissue Organ Cult. 83, 187–200.

    Article  Google Scholar 

  6. Kwon, T.-H., Kim, Y.-S., Lee, J.-H., and Yang, M.-S. (2003) Production and secretion of biologically active human granulocyte-macrophage colony stimulating factor in transgenic tomato suspension cultures. Biotechnol. Letts. 25, 1571–1574.

    Article  CAS  Google Scholar 

  7. Vanisree, M., Lee, C.-Y., Lo, S.-F, Nalawade, S. M., Lin, C. Y., and Tsay, H.-S. (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot. Bull. Acad. Sinica 45, 1–22.

    CAS  Google Scholar 

  8. Wong, P. L., Royce, A. J., and Lee-Parsons, C. W. T. (2004) Improved ajmalicine production and recovery from Catharanthus roseus suspensions with increased product removal rates. Biochem. Eng. J. 21, 253–258.

    Article  CAS  Google Scholar 

  9. Yano, A., Maeda, F., and Takekoshi, M. (2004) Transgenic tobacco cells producing the human monoclonal antibody to hepatitis B virus surface antigen. J. Med. Virol. 73, 208–215.

    Article  CAS  Google Scholar 

  10. Min, S. R., Woo, J. W., Jeong, W. J., Han, S. K., Lee, Y. B., and Liu, J. R. (2006) Production of human lactoferrin in transgenic cell suspension cultures of sweet potato. Biologia Plantarum 50, 131–137.

    Article  CAS  Google Scholar 

  11. Tokuhara, K. and Mii, M. (2003) Highly-efficient somatic embryogenesis from cell suspension cultures of phalaenopsis orchids by adjusting carbohydrate sources. In Vitro Cell. Dev. Biol. Plant 39, 635–639.

    Article  Google Scholar 

  12. Varisai Mohamed, S., Wang, C. S., Thiruvengadam, M., and Jayabalan, N. (2004) In vitro plant regeneration via somatic embryogenesis through cell suspension cultures of horsegram [Macrotyloma uniflorum (Lam.) Verdc.]. In Vitro Cell. Dev. Biol. Plant 40, 284–289.

    Article  Google Scholar 

  13. Mohamed, S. V., Sung, J.-M., Jeng, T.-L., and Wang, C.-S. (2005) Optimization of somatic embryogenesis in suspension cultures of horsegram [Macrotyloma uniflorum (Lam.) Verdc.]: a hardy grain legume. Sci. Hortic. 106, 427–439.

    Article  CAS  Google Scholar 

  14. Guo, Y. and Zhang, Z. (2005) Establishment and plant regeneration of somatic embryogenic cell suspension cultures of the Zingiber officinale Rosc. Sci. Hortic. 107, 90–96.

    Article  CAS  Google Scholar 

  15. Planchais, S., Glab, N., Inzé, D., and Bergounioux, C. (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Letts. 476, 78–83.

    Article  CAS  Google Scholar 

  16. McCutcheon, S., Hemsley, R. J., Jopson, M. F, and Lloyd, C. W. (2001) Caged cytoskeletons: a rapid method for the isolation of microtubule-associated proteins from synchronized plant suspension cells. Plant J. 28, 117–122.

    Article  CAS  Google Scholar 

  17. Menges, M. and Murray, J. A. H. (2004) Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures Plant J. 37, 635–644.

    Article  CAS  Google Scholar 

  18. Withers, L. A. (1985) Cryopreservation of cultured plant cells and protoplasts. In: Cryopreservation of Plant Cells and Organs, (Kartha, K. K., ed.), CRC Press, Boca Raton, FL, pp. 244–265.

    Google Scholar 

  19. Grout, B. (ed.) (1995) Genetic Preservation of Plant Cells in Vitro. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  20. Benson, E. (2004) Cryoconserving algal and plant diversity: historical perspectives and future challenges. In: Life in the Frozen State, (Fuller, B. J., Lane, N., and Benson, E. E., eds.), CRC Press, London, UK, pp. 299–328.

    Chapter  Google Scholar 

  21. Fuller, B. J. (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25, 375–388.

    CAS  Google Scholar 

  22. Mazur, P. (2004) Principles of cryobiology. In: Life in the Frozen State, (Fuller, B. J., Lane, N., and Benson, E. E., eds.), CRC Press, London, UK, pp. 3–66.

    Chapter  Google Scholar 

  23. Muldrew, K., Acker, J. P., Elliott, J. A. W., and McGann, L. E. (2004) The water to ice transition: implications for living cells. In: Life in the Frozen State, (Fuller, B. J., Lane, N., and Benson, E. E., eds.), CRC Press, London, UK, pp. 67–108.

    Chapter  Google Scholar 

  24. Withers, L. A. and King, P. J. (1980) A simple freezing unit and cryopreservation method for plant cell suspensions. CryoLetters 1, 213–220.

    Google Scholar 

  25. Danso, K. E. and Ford-Lloyd, B. V. (2004) Cryopreservation of embryogenic calli of cassava using sucrose cryoprotection and air desiccation. Plant Cell Rep. 22, 623–631.

    Article  CAS  Google Scholar 

  26. Withers, L. A. (1990) Cryopreservation of plant cells. In: Methods in Molecular Biology Vol. 6: Plant Cell and Tissue Culture, (Pollard, J. W. and Walker, J. M., eds.), Humana Press, Totowa, NJ, pp. 39–48.

    Chapter  Google Scholar 

  27. Benson, E. E. and Lynch, P. T. (1999) Cryopreservation of rice tissue cultures. In: Methods in Molecular Biology Vol. 111: Plant Cell Culture Protocols, (Hall, R. D., ed.), Humana Press, Totowa, NJ, pp. 383–394.

    Google Scholar 

  28. Shibli, R. A., Haagenson, D. M., Cunningham, S. M., Berg, W. K., and Volenec, J. J. (2001) Cryopreservation of alfalfa (Medicago sativa L.) by encapsulation-dehydration. Plant Cell Rep. 20, 445–450.

    Article  CAS  Google Scholar 

  29. Lambardi, M., Lynch, P. T., Benelli, C., Mehra, A., and Siddika, A. (2002) Towards the cryopreservation of olive germplasm. Advances in Hort. Science 16, 165–174.

    Google Scholar 

  30. Schrijnemakers, E. W. M. and Van Iren, F. (1995) A two-step or equilibrium freezing procedure for the cryopreservation of plant cell suspensions. In: Methods in Molecular Biology vol. 38, Cryopreservation and Freeze-drying Protocols, (Day, J. G. and McLellan, M. R., eds.), Humana Press, Totowa, NJ, pp. 103–111.

    Chapter  Google Scholar 

  31. Sakai, A. (2004) Plant cryopreservation. In: Life in the Frozen State, (Fuller, B. J., Lane, N., and Benson, E. E., eds.), CRC Press, London, UK, pp. 329–346.

    Chapter  Google Scholar 

  32. Leunufna, S. and Keller, E. R. S. (2005) Cryopreservation of yams using vitrification modified by including droplet method: effects of cold acclimation and sucrose. CryoLetters 26, 93–102.

    CAS  Google Scholar 

  33. Wang, Q., Mawassi, M., Sahar, N., et al. (2004) Cryopreservation of grapevine (Vitis spp.) embryogenic cell suspensions by encapsulation-vitrification. Plant Cell Tissue Organ Cult. 77, 267–275.

    Article  CAS  Google Scholar 

  34. Sakai, A., Kobatashi, S., and Oiyama, I. (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb var brasiliensis Tanaka) by vitrification. Plant Cell Rep. 9, 30–33.

    Article  Google Scholar 

  35. Yamada, T. and Sakai, A. (1996) Cryopreservation of cells and tissues by using simple cryogenic methods. In: Proceedings of the International Workshop on In Vitro Conservation of Plant Genetic Resources, (Normah, M. N., Narimah, M. K., and Clyde, M. M., eds.), Plant Biotechnology Laboratory, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia, pp. 89–103.

    Google Scholar 

  36. Martinez-Montero, M. E., Ojeda, E., Espinosa, A., et al. (2002) Field performance of sugarcane (Saccharum sp.) plants derived from cryopreserved calluses. CryoLetters 23, 21–26.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Grout, B.W.W. (2007). Cryopreservation of Plant Cell Suspensions. In: Day, J.G., Stacey, G.N. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology™, vol 368. Humana Press. https://doi.org/10.1007/978-1-59745-362-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-362-2_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-377-0

  • Online ISBN: 978-1-59745-362-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics