Skip to main content

Electron Energy-Loss Spectroscopy as a Tool for Elemental Analysis in Biological Specimens

  • Protocol
Electron Microscopy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 369))

Abstract

A transmission electron microscope (TEM) accessory, the energy filter, enables the establishment of a method for elemental microanalysis, the electron energy-loss spectroscopy (EELS). In conventional TEM, unscattered, elastic, and inelastic scattered electrons contribute to image information. Energy-filtering TEM (EFTEM) allows elemental analysis at the ultrastructural level by using selected inelastic scattered electrons. EELS is an excellent method for elemental microanalysis and nanoanalysis with good sensitivity and accuracy. However, it is a complex method whose potential is seldom completely exploited, especially for biological specimens. In addition to spectral analysis, parallel-EELS, we present two different imaging techniques in this chapter, namely electron spectroscopic imaging (ESI) and image-EELS. We aim to introduce these techniques in this chapter with the elemental microanalysis of titanium. Ultrafine, 22-nm titanium dioxide particles are used in an inhalation study in rats to investigate the distribution of nanoparticles in lung tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egerton, R. F. (1982) Electron energy loss analysis in biology. Electron Microsc. 1, 151–158.

    CAS  Google Scholar 

  2. Jeanguillaume, C. (1987) Electron energy loss spectroscopy and biology. Scanning Microsc. 1, 437–450.

    CAS  PubMed  Google Scholar 

  3. Roomans, G. M., Wroblewski, J., and Wroblewski, R. (1988) Elemental microanalysis of biological specimens. Scanning Microsc. 2, 937–946.

    CAS  PubMed  Google Scholar 

  4. Pezzati, R., Bossi, M., Podini, P., Meldolesi, J., and Grohovaz, F. (1997) High-resolution calcium mapping of the endoplasmatic reticulum-golgi-exocytic membrane system. Mol. Biol. Cell 8, 1501–1512.

    CAS  PubMed  Google Scholar 

  5. Bordat, C., Bouet, O., and Cournot, G. (1998) Calcium distribution in high-pressure frozen bone cells by electron energy loss spectroscopy and electron spectroscopic imaging. Histochem. Cell Biol. 109, 167–174.

    Article  CAS  PubMed  Google Scholar 

  6. Bordat, C., Sich, M. S., Réty, F., Bouet, O., Cournot, G., Cuénod, C. A., and Clément, O. (2000) Distribution of iron oxide nanoparticles in rat lymph nodes studied using electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI). J. Magnetic Res. Imaging 12, 505–509.

    Article  CAS  Google Scholar 

  7. Fehrenbach, H., Schmiedl, A., Brasch, F., and Richter, J. (1994) Evaluation of lanthanide tracer methods in the study of mammalian pulmonary parenchyma and cardiac muscle by electron energy-loss spectroscopy. J. Microsc. (Oxford) 174, 207–223.

    CAS  Google Scholar 

  8. Stearns, R. C., Paulauskis, J. D., and Godleski, J. J. (2001) Endocytosis of ultrafine particles by A549 cells. Am. J. Respir. Cell Mol. Biol. 24, 108–115.

    CAS  PubMed  Google Scholar 

  9. Leapman, R. D., Sun, S. Q., Hunt, J. A., and Andrews, S. B. (1994) Biological electron energy loss spectroscopy in the field-emission scanning transmission electron microscope. Scanning Microsc. Suppl. 8, 245–258.

    CAS  PubMed  Google Scholar 

  10. Leapman, R. D. (2003) Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging. J. Microsc. (Oxford) 210, 5–15.

    Article  CAS  Google Scholar 

  11. Leapman, R. D., Kocsis, E., Zhang, G., Talbot, T. L., and Laquerriere, P. (2004) Three-dimensional distribution of elements in biological samples by energy-filtered electron tomography. Ultramicroscopy 100, 115–125.

    Article  CAS  PubMed  Google Scholar 

  12. Kapp, N., Kreyling, W., Schulz, H., Im Hof, V., Gehr, P., Semmler, M., and Geiser, M. (2004) Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs. Microsc. Res. Tech. 63, 298–305.

    Google Scholar 

  13. Geiser, M., Rothen-Rutishauser, B., Kapp, N., et al. (2005) Ultrafine particles cross cellular membranes by non-phagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 113, 1155–1160.

    Article  Google Scholar 

  14. Barfels, M. M. G., Jiang, X., Heng, X. J., Arsenault, A. L., and Ottensmeyer F. P. (1998) Low energy loss electron microscopy of chromophores. Micron 29, 97–104.

    Article  CAS  PubMed  Google Scholar 

  15. Williams, D. B. and Carter, C. B. (eds.) (1996) Transmission Electron Microscopy: A Textbook for Material Scientists. IV Spectrometry. Plenum Press, New York.

    Google Scholar 

  16. Brydson, R. (1991) Interpretation of near-edge structure in the electron energy-loss spectrum. EMSA Bull. 21, 57–67.

    Google Scholar 

  17. Körtje, K. H. (1994) Image-EELS: simultaneous recording of multiple electron energy-loss spectra from series of electron spectroscopic images. J. Microsc. (Oxford) 174, 149–159.

    Google Scholar 

  18. Egerton, R. F. (ed.) (1986) Electron Energy-loss Spectroscopy in the Electron Microscope. Plenum Press, New York.

    Google Scholar 

  19. Reimer, L., Zepke, U., Moesch, J., Schulze-Hillert, S., Ross-Messemer, M., Probst, W., and Weimer, E. (eds.) (1992) EEL Spectroscopy. A Reference Handbook of Standard Data for Identification and Interpretation of electron energy loss spectra and for generation of electron spectroscopic images. Carl Zeiss, Oberkochen.

    Google Scholar 

  20. Jeanguillaume, C., Trebbia, P., and Colliex, C. (1978). About the use of EELS for chemical mapping of thin foils with high spatial resolution. Ultramicroscopy 3, 137–142.

    Article  Google Scholar 

  21. Lavergne, J. L., Foa, C., Bongrand, P., Seux, D., and Martin, J. M. (1994) Application of recording and processing of energy-filtered image sequences for elemental mapping of biological specimens: Image-spectrum. J. Microsc. (Oxford) 174, 195–206.

    CAS  Google Scholar 

  22. Williams, D. B. and Carter, C. B. (eds.) (1996) Transmission Electron Microscopy: A Textbook for Material Scientists. I. Basic. Plenum Press, New York.

    Google Scholar 

  23. Gelsema, E. S., Beckers, A. L., Sorber, C. W., and de Bruijn, W. C. (1992) Correspondence analysis for quantification in electron energy loss spectroscopy and imaging. Methods Inf. Med. 31, 29–35.

    CAS  PubMed  Google Scholar 

  24. Starosud, A., Bazett-Jones, D. P., and Langford, C. H. (1997) Energy filtered transmission electron microscopy (EFTEM) in the characterization of supported TiO2 photocatalysts. Chem. Commun. 5, 443–444.

    Article  Google Scholar 

  25. Kreyling, W. G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., and Schulz, H. (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health 65, 1513–1530.

    Article  CAS  Google Scholar 

  26. Im Hof, V., Scheuch, G., Geiser, M., Gebhart, G., Gehr, P., and Heyder, J. (1989) Techniques for the determination of particle deposition in lungs of hamsters. J. Aerosol. Med. 2, 247–259.

    Google Scholar 

  27. Ottensmeyer, F. P. (1984) Electron Spectroscopic Imaging: Parallel energy filtering and microanalysis in the fixed-beam electron microscope. J. Ultrastruct. Res. 88, 121–134.

    Article  CAS  PubMed  Google Scholar 

  28. Ottensmeyer, F. P. and Andrews, J. W. (1980) High-resolution microanalysis of biological spsecimens by electron energy-loss spectroscopy and by electron spectroscopic imaging. J. Ultrastruct. Res. 72, 336–348.

    Article  CAS  PubMed  Google Scholar 

  29. Ottensmeyer, F. P. (1982) Scattered electrons in microscopy and microanalysis. Science 215, 461–466.

    Article  CAS  PubMed  Google Scholar 

  30. Colliex, C. (1986) Electron energy-loss spectroscopy analysis and imaging of biological specimen. Ann. NY Acad. Sci. 483, 311–325.

    Article  CAS  PubMed  Google Scholar 

  31. Leapman, R. D. and Newbury, D. E. (1993) Trace element analysis at nanometer spatial resolution by paralle-detection electron energy-loss spectroscopy. Anal. Chem. 65, 2409–2414.

    Article  CAS  PubMed  Google Scholar 

  32. Hunt, J. A. and Williams, D. B. (1991) Energy-loss spectrum-imaging. Ultramicroscopy 38, 47–73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Kapp, N., Studer, D., Gehr, P., Geiser, M. (2007). Electron Energy-Loss Spectroscopy as a Tool for Elemental Analysis in Biological Specimens. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology™, vol 369. Humana Press. https://doi.org/10.1007/978-1-59745-294-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-294-6_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-573-6

  • Online ISBN: 978-1-59745-294-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics