Skip to main content

Advertisement

Log in

Differential analysis of phosphorylated proteins in resting and thrombin-stimulated human platelets

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Blood platelets are important components of haemostasis. After their activation they cause healing of wounds by forming plugs and initiate repair processes. One important event in regulating this activation is the phosphorylation/dephosphorylation of multiple proteins on various tyrosine, serine and threonine residues. To understand the exact molecular mechanisms in platelet activation it is essential to identify proteins involved in the signalling pathways and to localise and characterise their phosphorylation sites. After treatment with 32P and separation by 2D-PAGE using different pI ranges, phosphorylated platelet proteins were detected by autoradiography. Phosphotyrosine-containing proteins were assigned by immunoblotting with an anti-phosphotyrosine antibody. Another approach for the identification of phosphorylated proteins was immunoprecipitation of tyrosine-phosphorylated proteins using an anti-phosphotyrosine antibody. Protein spots/bands of interest were excised from the gel, digested with trypsin and analysed by MALDI-TOF-MS and nano-LC-ESI-MS/MS, respectively. Several phosphorylated proteins could be identified and the localisation of some in vivo phosphorylation sites was possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A,B.
Fig. 2.
Fig. 3A,B.
Fig. 4.
Fig 5A–C.
Fig. 6A–D.
Fig. 7A,B.
Fig. 8.A–C
Fig. 9A,B.
Fig. 10.

Similar content being viewed by others

Abbreviations

DTT:

1,4-dithiothreitol

HCCA:

α-cyano-4-hydroxycinnamic acid

PMSF:

phenylmethylsulfonylfluoride

PSD:

post source decay

TFA:

trifluoroacetic acid

TOF:

time-of-flight

References

  1. Marcus AJ, Safier LB (1993) FASEB J 7:516–522

    CAS  PubMed  Google Scholar 

  2. Watson SP (1997) Platelets and their factors 297–323

  3. Presek P, Martinson EA (1997) Platelets and their factors 263–296

  4. Coughlin SR (2001) Thromb Haemost 86:298–307

    CAS  PubMed  Google Scholar 

  5. Fitzgerald DJ (2001) Neurology 57:S1-S4

    CAS  Google Scholar 

  6. Lottspeich F (1999) Angew Chemie 111:2630–2647

    Article  Google Scholar 

  7. Blackstock WP, Weir MP (1999) Tibtech 17:121–127

    Article  CAS  Google Scholar 

  8. O'Neill EE, Brock CJ, von Kriegsheim AF, Pearce AC, Dwek RA, Watson SP, Hebestreit HF (2002) Proteomics 2:288–305

    Article  CAS  PubMed  Google Scholar 

  9. Marcus K, Immler D, Sternberger J, Meyer HE (2000) Electrophoresis 21:2622–2636

    Article  CAS  PubMed  Google Scholar 

  10. Maguire PB, Wynne KJ, Harney DF, O'Donoghue NM, Stephens G, Fitzgerald DJ (2002) Proteomics 2:642–648

    Article  CAS  PubMed  Google Scholar 

  11. Görg A, Postel W, Günther S, Weser J (1985) Electrophoresis 6:599–604

    Google Scholar 

  12. Görg A, Postel W, Günther S (1988) Electrophoresis 9:531–546.

    PubMed  Google Scholar 

  13. Laemmli UK (1970) Nature 227:680–685

    PubMed  Google Scholar 

  14. Doherty NS, Littman BH, Reilly K, Swindell AC, Buss JM, Anderson NL (1998) Electrophoresis 19:355–363

    CAS  PubMed  Google Scholar 

  15. Dunn MJ (1992) Methods Mol Biol 112:313–318

    Google Scholar 

  16. Kyhse-Andersen J (1984) J Biochem Biophys Methods 10:203–209

    PubMed  Google Scholar 

  17. Butt E, Gambaryan S, Gottfert, Galler A, Marcus K, Meyer HE (2003) J Biol Chem 5 (in press)

  18. Eng J, McCormack AL, Yates JR III (1994) J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  19. Yates JR III, Eng J, McCormack AL, Schieltz D (1995) Anal Chem 67:1426–1436

    PubMed  Google Scholar 

  20. Rabilloud T (1996) Electrophoresis 17:813–829

    CAS  PubMed  Google Scholar 

  21. Marcus K, Meyer HE (2003) Platelets and megacaryocytes. In: Methods in molecular medicine series. Humana Press, (in press)

  22. Kaufmann H, Bailey JE, Fussenegger M (2001) Proteomics 2:194–199

    Article  Google Scholar 

  23. Immler D, Gremm D, Kirsch D, Spengler B, Presek P, Meyer HE (1998) Electrophoresis 6:1015–1023

    Google Scholar 

  24. Nachmias VT, Kavaler J, Jacubowitz S, (1985) Nature 313:70–72

    CAS  PubMed  Google Scholar 

  25. Haslam RJ, Lynham JA, Fox JEB (1979) Biochem J 178:397–406

    CAS  PubMed  Google Scholar 

  26. Abrams CS, Zhao W, Belmonte E, Brass LF (1995) J Biol Chem 270:23317–23321

    Article  CAS  PubMed  Google Scholar 

  27. Craig KL, Harley CB (1996) Biochem J 314:937–942

    CAS  PubMed  Google Scholar 

  28. Auethavekiat V, Abrams CS, Majerus PW (1997) J Biol Chem 272:1786–1790

    Article  CAS  PubMed  Google Scholar 

  29. Fujitani K, Kambayashi J, Sakon M, Ohmi SI, Kawashima S, Yukawa M, Yano Y, Miyoshi H, Ikeda M, Shinoki N, Monden M (1997) J Cell Biochem 66:197–209

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi M, Suzuki H, Kawashima S, Saido TC, Inomata M (1999) Arch Biochem Biophys 15:133–142

    Article  Google Scholar 

  31. Sickmann A, Meyer HE (2001) Proteomics 2:200–206

    Article  Google Scholar 

  32. Yan JX, Packer NH, Gooley AA, Williams KL (1998) J Chromatogr A 808:23–41

    Article  CAS  PubMed  Google Scholar 

  33. Mortz E, Sareneva T, Haebel S, Julkunen I, Roepstorff P (1996) Electrophoresis 17:925–931

    CAS  PubMed  Google Scholar 

  34. Annan RS, Carr SA (1996) Anal Chem 68:3413–3421

    Article  CAS  PubMed  Google Scholar 

  35. McLachlin DT, Chait BT (2001) Curr Opin Chem Biol 5:591–602

    Article  CAS  PubMed  Google Scholar 

  36. Seydewitz HH, Kaiser C, Rothweiler H, Witt I (1984) Thromb Res 33:487–498

    CAS  PubMed  Google Scholar 

  37. Naka M, Saitoh M, Hidaka H (1988) Arch Biochem Biophys 261:235–40

    CAS  PubMed  Google Scholar 

  38. Kawamoto S, Bengur AR, Sellers JR, Adelstein RS (1989) J Biol Chem 264:2258–2265

    CAS  PubMed  Google Scholar 

  39. Moussavi RS, Kelley CA, Adelstein RS (1993) Mol Cell Biochem 127–128:219–227

  40. Nishikawa M, Tanaka T, Hidaka H (1980) Nature 287:863–865

    CAS  PubMed  Google Scholar 

  41. Schuuring E, Verhoeven E, Litvinov S, Michalides RJ (1993) Mol Cell Biol 13:2891–2898

    CAS  PubMed  Google Scholar 

  42. Huang C, Ni Y, Wang T, Gao Y, Haudenschild CC, Zhan X (1997) J Biol Chem 272:13911–13915

    Article  CAS  PubMed  Google Scholar 

  43. Campbell DH, Sutherland RL, Daly RJ (1999) Cancer Res 59:5376–5385

    CAS  PubMed  Google Scholar 

  44. van Damme H, Brok H, Schuuring-Scholtes E, Schuuring E (1997) J Biol Chem 272:7374–7380

    Article  PubMed  Google Scholar 

  45. Huang C, Liu J, Haudenschild CC, Zhan X (1998) J Biol Chem 273:25770–25776

    Article  CAS  PubMed  Google Scholar 

  46. Raffel GD, Parmar K, Rosenberg N (1996) J Biol Chem 271:4640–4645

    Article  CAS  PubMed  Google Scholar 

  47. Papayannopoulos IA (1995) Mass Spectr Rev 14:49–73

    CAS  Google Scholar 

  48. Jungbluth A, Eckerskorn C, Gerisch G, Lottspeich F, Stocker S, Schweiger A (1995) FEBS Lett 375(1–2):87–90

  49. Burgon PG, Lee WL, Nixon AB, Peralta EG, Casey PJ (2001) J Biol Chem 276:32828–32834

    Article  CAS  PubMed  Google Scholar 

  50. Law DA, Nannizzi-Alaimo L, Phillips DR (1996) J Biol Chem 271:10811–108115

    Article  CAS  PubMed  Google Scholar 

  51. Chiang TM (1993) Arch Biochem Biophys 302:56–63

    Article  CAS  PubMed  Google Scholar 

  52. De Corte V, Demol H, Goethals M, Van Damme J, Gettemans J, Vandekerckhove J (1999) Protein Sci 8:234–241

    PubMed  Google Scholar 

  53. Davidson MM, Haslam RJ (1994) Biochem J 301:41–47

    CAS  PubMed  Google Scholar 

  54. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Nature 393:805–809

    Article  CAS  PubMed  Google Scholar 

  55. Saito T, Lamy F, Roger PP, Lecocq R, Dumont JE (1994) Exp Cell Res 212:49–61

    Article  CAS  PubMed  Google Scholar 

  56. Wallach D, Davies P, Bechtel P, Willingham M, Pastan I (1978) Adv Cyclic Nucleotide Res 9:371–379

    CAS  PubMed  Google Scholar 

  57. Gorlin JB, Yamin R, Egan S, Stewart M, Stossel TP, Kwiatkowski DJ, Hartwig JH (1990) J Cell Biol 111:1089–1105

    Google Scholar 

  58. Conti MA, Sellers JR, Adelstein RS, Elzinga M (1991) Biochemistry 30:966–770

    CAS  PubMed  Google Scholar 

  59. Tisdale EJ (2002) J Biol Chem 277:3334–3341

    Article  CAS  PubMed  Google Scholar 

  60. Sygusch J, Beaudry D, Allaire M (1990) Arch Biochem Biophys 283:227–233

    CAS  PubMed  Google Scholar 

  61. Xue J, Wang X, Malladi CS, Kinoshita M, Milburn PJ, Lengyel I, Rostas JA, Robinson PJ (2000) J Biol Chem 275:10047–10056

    Article  CAS  PubMed  Google Scholar 

  62. Narumi S, Miyamoto E (1974) Biochim Biophys Acta 350:215–224

    Article  CAS  PubMed  Google Scholar 

  63. Heldin P, Humble E (1987) Arch Biochem Biophys 252:49–59

    CAS  PubMed  Google Scholar 

  64. Bouchard P, Zhao Z, Banville D, Dumas F, Fischer EH, Shen SH (1994) J Biol Chem 269:19585–19589

    CAS  PubMed  Google Scholar 

  65. Catalan RE, Gargiulo L, Martinez AM, Calcerrada MC, Liras A (1997) FEBS Lett 400:280–286

    Article  CAS  PubMed  Google Scholar 

  66. Oda A, Ochs HD, Druker BJ, Ozaki K, Watanabe C, Handa M, Miyakawa Y, Ikeda Y (1998) Blood 92:1852–1858

    CAS  PubMed  Google Scholar 

  67. Halbrugge M, Friedrich C, Eigenthaler M, Schanzenbacher P, Walter U (1990) J Biol Chem 265:3088–3093

    CAS  PubMed  Google Scholar 

  68. Butt E, Abel K, Krieger M, Palm D, Hoppe V, Hoppe J, Walter U (1994) J Biol Chem 269:14509–14517

    CAS  PubMed  Google Scholar 

  69. Harbeck B, Huttelmaier S, Schluter K, Jockusch BM, Illenberger S (2000) J Biol Chem 75:30817–30825

    Article  Google Scholar 

  70. Yanagida M, Miura Y, Yagasaki K, Taoka M, Isobe T, Takahashi N (2000) Electrophoresis 21:1890–1898

    Article  CAS  PubMed  Google Scholar 

  71. Meyer T, Unterberg C, Kreuzer H, Buchwald AB (1996) Thromb Haemost 75:617–622

    CAS  PubMed  Google Scholar 

  72. Jin JP, Walsh MP, Sutherland C, Chen W (2000) Biochem J 350:579–588

    Article  PubMed  Google Scholar 

  73. Berry S, Dawicki D, Steiner M (1988) Biochem Biophys Res Commun 151:1250–1255

    CAS  PubMed  Google Scholar 

  74. Ley SC, Verbi W, Pappin DJ, Druker B, Davies AA, Crumpton MJ (1994) Eur J Immunol 24:99–106

    CAS  PubMed  Google Scholar 

  75. Cooper JA, Esch FS, Taylor SS, Hunter T (1984) J Biol Chem 259:7835–7841

    CAS  PubMed  Google Scholar 

  76. Hadari YR, Haring HU, Zick Y (1997) J Biol Chem 272:657–662

    Article  CAS  PubMed  Google Scholar 

  77. Mizukoshi E, Suzuki M, Misono T, Loupatov A, Munekata E, Kaul SC, Wadhwa R, Imamura T (2001) Biochem Biophys Res Commun 280:1203–1209

    Article  CAS  PubMed  Google Scholar 

  78. Adam LP, Gapinski CJ, Hathaway DR (1992) FEBS Lett 302:223–236

    Article  CAS  PubMed  Google Scholar 

  79. Hedges JC, Oxhorn BC, Carty M, Adam LP, Yamboliev IA, Gerthoffer WT (2000) Am J Physiol Cell Physiol 278:C718–26

    CAS  PubMed  Google Scholar 

  80. Chew CS, Parente JA Jr, Zhou C, Baranco E, Chen X (1998) Am J Physiol 275:C56–67

    CAS  PubMed  Google Scholar 

  81. Clark EA, Brugge JS (1993) Mol Cell Biol 13:1863–1871

    CAS  PubMed  Google Scholar 

  82. McLachlin DT, Chait BT (2001) Curr Opin Chem Biol 2001 5:591–602

    Article  CAS  Google Scholar 

  83. Jensen ON, Larsen MR, Roepstorff P (1998) Structure, function and genetics 2:74–89

  84. Kussmann M, Hauser K, Kissmehl R, Breed J, Plattner H, Roepstorff P (1999) Biochemistry 38:7780–7790

    Article  CAS  PubMed  Google Scholar 

  85. Amankwa LN, Harder K, Jirik F, Aebersold R (1995) Protein Sci 4:113–125

    CAS  PubMed  Google Scholar 

  86. Hunter AP, Games DE (1994) Rapid Commun Mass Spectrom 8:559–570

    CAS  PubMed  Google Scholar 

  87. Wilm M, Neubauer G, Mann M (1996) Anal Chem 68:527–533

    Article  CAS  PubMed  Google Scholar 

  88. Steen H, Küster B, Fernandez M Pandey A, Mann M (2001) Anal Chem 73:1440–1448

    Article  CAS  PubMed  Google Scholar 

  89. Schlosser A, Pipkorn R, Bossemeyer D, Lehmann WD (2001) Anal Chem 73:170–176

    Article  CAS  PubMed  Google Scholar 

  90. Larsen MR, Roepstorff P (2000) Fresenius J Anal Chem 366:677–690

    CAS  PubMed  Google Scholar 

  91. Pandey A, Andersen JS, Mann M (2001) STKE 37:PL1

    Google Scholar 

  92. Figeys D, Gygi SP, Zhang Y, Watts J, Gu M, Aebersold R (1998) Electrophoresis 19:1811–1818

    CAS  PubMed  Google Scholar 

  93. Posewitz MC, Tempst P (1999) Anal Chem 71:2883–2892

    Article  CAS  PubMed  Google Scholar 

  94. Butt E, Bernhardt M, Smolenski A, Kotsonis P, Frohlich LG, Sickmann A, Meyer HE, Lohmann SM, Schmidt HH (2000) J Biol Chem 275:5179–5187

    Article  CAS  PubMed  Google Scholar 

  95. Lehr S, Kotzka J, Herkner A, Sickmann A, Meyer HE, Krone W, Muller-Wieland (2000) Biochemistry 39:10898–10907

    Article  CAS  PubMed  Google Scholar 

  96. Fox JEB (2001) Thromb Haemost 86:198–213

    CAS  PubMed  Google Scholar 

  97. Goldmann WH (2001) Cell Biol Int 25:805–808

    Article  CAS  PubMed  Google Scholar 

  98. Butt E, Gambaryan S, Gottfert, Galler A, Marcus K, Meyer HE (2003) J Biol Chem 5 (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Marcus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcus, K., Moebius, J. & Meyer, H.E. Differential analysis of phosphorylated proteins in resting and thrombin-stimulated human platelets. Anal Bioanal Chem 376, 973–993 (2003). https://doi.org/10.1007/s00216-003-2021-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2021-z

Keywords

Navigation