Skip to main content

In Vivo Labeling and Analysis of Mitochondrial Translation Products in Budding and in Fission Yeasts

  • Protocol
  • First Online:
Membrane Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 457))

Summary

Mitochondrial biogenesis requires the contribution of two genomes and of two compartmentalized protein synthesis systems (nuclear and mitochondrial). Mitochondrial protein synthesis is unique on many respects, including the use of a genetic code with deviations from the universal code, the use of a restricted number of transfer RNAs, and because of the large number of nuclear encoded factors involved in assembly of the mitochondrial biosynthetic apparatus. The mitochondrial biosynthetic apparatus is involved in the actual synthesis of a handful of proteins encoded in the mitochondrial DNA. The budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe are excellent models to identify and study factors required for mitochondrial translation. For that purpose, in vivo mitochondrial protein synthesis, following the incorporation of a radiolabeled precursor into the newly synthesized mitochondrial encoded products, is a relatively simple technique that has been extensively used. Although variations of this technique are well established for studies in S. cerevisiae, they have not been optimized yet for studies in S. pombe. In this chapter, we present an easy, fast and reliable method to in vivo radiolabel mitochondrial translation products from this fission yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margulis, L. (1975) Symbiotic theory of the origin of eukaryotic rganelles; criteria for proof Symp. Soc. Exp. Biol., 21–38.

    Google Scholar 

  2. Pel, H. J., and Grivell, L. A. (1994) Protein synthesis in mitochondria Mol. Biol. Rep. 19, 183–94.

    Article  PubMed  CAS  Google Scholar 

  3. Towpik, J. (2005) Regulation of mitochondrial translation in yeast. Cell Mol. Biol. Lett. 10, 571–594.

    PubMed  CAS  Google Scholar 

  4. Sirum-Connolly, K., and Mason, T. L. (1995) The role of nucleotide modifications in the yeast mitochondrial ribosome Nucleic Acids Symp. Ser., 73–75.

    Google Scholar 

  5. Barrientos, A., Korr, D., Barwell, K. J., Sjulsen, C., Gajewski, C. D., Manfredi, G., Ackerman, S., and Tzagoloff, A. (2003) MTG1 codes for a conserved protein required for mitochondrial translation Mol. Biol. Cell 14, 2292–2302.

    Article  PubMed  CAS  Google Scholar 

  6. Datta, K., Fuentes, J. L., and Maddock, J. R. (2005) The yeast GTPase Mtg2p is required for mitochondrial translation and partially suppresses an rRNA methyltransferase mutant, mrm2 Mol. Biol. Cell 16, 954–963.

    Article  PubMed  CAS  Google Scholar 

  7. Bhattacharyya, S. N., and Adhya, S. (2004) The complexity of mitochondrial tRNA import RNA Biol. 1, 84–88.

    CAS  Google Scholar 

  8. Fukuhara, H., and Bolotin-Fukuhara, M. (1976) Deletion mapping of mitochondrial transfer RNA genes in Saccharomyces cerevisiae by means of cytoplasmic petite mutants Mol. Gen. Genet. 145, 7–17.

    Article  PubMed  CAS  Google Scholar 

  9. Terpstra, P., Zanders, E., and Butow, R. A. (1979) The association of var1 with the 38 S mitochondrial ribosomal subunit in yeast J. Biol. Chem. 254, 12653–12661.

    PubMed  CAS  Google Scholar 

  10. Bullerwell, C. E., Leigh, J., Forget, L., and Lang, B. F. (2003) A comparison of three fission yeast mitochondrial genomes Nucleic Acids Res. 31, 759–768.

    Article  PubMed  CAS  Google Scholar 

  11. Myers, A. M., Pape, L. K., and Tzagoloff, A. (1985) Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae EMBO J. 4, 2087–2092.

    CAS  Google Scholar 

  12. Chiron, S., Suleau, A., and Bonnefoy, N. (2005) Mitochondrial translation: elongation factor tu is essential in fission yeast and depends on an exchange factor conserved in humans but not in budding yeast Genetics 169, 1891–1901.

    Article  PubMed  CAS  Google Scholar 

  13. Haffter, P., and Fox, T. D. (1992) Nuclear mutations in the petite-negative yeast Schizosaccharomyces pombe allow growth of cells lacking mitochondrial DNA Genetics 131, 255–260.

    PubMed  CAS  Google Scholar 

  14. Schafer, B. (2003) Genetic conservation versus variability in mitochondria: the architecture of the mitochondrial genome in the petite-negative yeast Schizosaccharomyces pombe Curr. Genet. 43, 311–326.

    Article  PubMed  Google Scholar 

  15. Costanzo, M. C., Bonnefoy, N., Williams, E. H., Clark-Walker, G. D., and Fox, T. D. (2000) Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts Genetics 154, 999–1012.

    PubMed  CAS  Google Scholar 

  16. Zambrano, A., Fontanesi, F., Solans, A., et al. (2007) Aberrant Translation of Cytochrome c Oxidase Subunit 1 mRNA Species in the Absence of Mss51p in the Yeast Saccharomyces cerevisiae Mol. Biol. Cell 18, 523–535.

    Google Scholar 

  17. Moreno, S., Klar, A., and Nurse, P. (1991) Molecular genetic analysis of the fission yeast Schizosaccharomyces pombe Methods Enzymol. 194, 795–823.

    Article  CAS  Google Scholar 

  18. Herrmann, J. M., Stuart, R. A., Craig, E. A., and Neupert, W. (1994) Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA J. Cell Biol. 127, 893–902.

    Article  PubMed  CAS  Google Scholar 

  19. Barrientos, A., Korr, D., and Tzagoloff, A. (2002) Shy1p is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh's syndrome EMBO J. 21, 43–52.

    Article  PubMed  CAS  Google Scholar 

  20. Grivell, L. A. (1995) Nucleo-mitochondrial interactions in mitochondrial gene expression Crit. Rev. Biochem. Mol. Biol. 30, 121–164.

    Article  PubMed  CAS  Google Scholar 

  21. Nosek, J., Tomaska, L., Fukuhara, H., Suyama, Y., and Kovac, L. (1998) Linear mitochondrial genomes: 30 years down the line Trends Genet. 14, 184–188.

    Article  PubMed  CAS  Google Scholar 

  22. Rotig, A., and Munnich, A. (2003) Genetic features of mitochondrial respiratory chain disorders J. Am. Soc. Nephrol. 14, 2995–3007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Institutes of Health Research Grant GM071775A (to A.B.), a Research Grant from the Muscular Dystrophy Association (to A.B.), and the National Science Foundation Grant MCB-0344798 (to F.V.)

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gouget, K., Verde, F., Barrientos, A. (2008). In Vivo Labeling and Analysis of Mitochondrial Translation Products in Budding and in Fission Yeasts. In: Vancura, A. (eds) Membrane Trafficking. Methods in Molecular Biology, vol 457. Humana Press. https://doi.org/10.1007/978-1-59745-261-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-261-8_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-925-3

  • Online ISBN: 978-1-59745-261-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics