Skip to main content

Biocomputational Strategies for Microbial Drug Target Identification

  • Protocol
New Antibiotic Targets

Part of the book series: Methods In Molecular Medicineā„¢ ((MIMM,volume 142))

Summary

The complete genome sequences of about 300 bacteria (mostly pathogenic) have been determined, and many more such projects are currently in progress. The detection of bacterial genes that are non-homologous to human genes and are essential for the survival of the pathogen represent a promising means of identifying novel drug targets. We present a subtractive genomics approach for the identification of putative drug targets in microbial genomes and demonstrate its execution using Pseudomonas aeruginosa as an example. The resultant analyses are in good agreement with the results of systematic gene deletion experiments. This strategy enables rapid potential drug target identification, thereby greatly facilitating the search for new antibiotics. It should be recognized that there are limitations to this computational approach for drug target identification. Distant gene relationships may be missed since the alignment scores are likely to have low statistical significance. In conclusion, the results of such a strategy underscore the utility of large genomic databases for in silico systematic drug target identification in the post-genomic era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miesel, L., Greene, J., and Black, T. A. (2003) Genetic strategies for antibacterial drug discovery. Nat. Rev. Genet. 4, 442ā€“456.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Huynen, M. A., Diaz-Lazcoz, Y., and Bork, P. (1997) Differential genome display. Trends Genet. 13, 389ā€“390.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Huynen, M., Dandekar, T., and Bork, P. (1998) Differential genome analysis applied to the species-specific features of Helicobacter pylori. FEBS Lett. 426, 1ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Sakharkar, K. R., Sakharkar, M. K., and Chow, V. T. (2004) A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa. In Silico Biol. 4, 355ā€“360.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Bruccoleri, R. E., Dougherty, T. J., and Davison, D. B. (1998) Concordance analysis of microbial genomes. Nucleic Acids Res. 26, 4482ā€“4486.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Sakharkar K. R., Sakharkar M. K., and Chow, V. T. (2006) Gene fusion in Helicobacter pylori: Making the ends meet. Antonie van Leeuwenhoek 89, 169ā€“180.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Galperin, M. Y., and Koonin, E. V. (1999) Searching for drug targets in microbial genomes. Curr. Opin. Biotechnol. 10, 571ā€“578.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Itaya, M. (1995) An estimation of minimal genome size required for life. FEBS Lett. 362, 257ā€“260.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Tatusov R. L., Koonin E. V., Lipman D. J. (1997) A genomic perspective on protein families. Science 278 631ā€“637

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Koonin, E. V., Tatusov, R. L., and Galperin, M. Y. (1998) Beyond complete genomes: From sequence to structure and function. Curr. Opin. Struct. Biol. 8, 355ā€“363.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Kobayashi, K., Ehrlich, S. D., Albertini, A., Amati, G., Andersen, K. K., Arnaud, M., et al. (2003) Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 100, 4678ā€“4683.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860ā€“921.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J.,Sutton, G. G., et al. (2001) The sequence of the human genome. Science 291, 1304ā€“1351.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Zhang, R., Ou, H. Y., and Zhang, C. T. (2004) DEG: A database of essential genes. Nucleic Acids Res. 32, D271ā€“D272.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Wheeler, D. L., Church, D. M., Edgar, R., Federhen, S., Helmberg, W., Madden, T. L., et al. (2004) Database resources of the National Center for Biotechnology Information: Update. Nucleic Acids Res. 32, D35ā€“D40.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Li, W., Jaroszewski, L., and Godzik, A. (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17, 282ā€“283.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959ā€“964.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Payne, D. J., Warren, P. V., Holmes, D. J., Ji, Y., and Lonsdale, J. T. (2001) Bacterial fatty-acid biosynthesis: A genomics-driven target for antibacterial drug discovery. Drug Discov. Today 6, 537ā€“544.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Heath, R. J., White, S. W., and Rock, C. O. (2002) Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics. Appl. Microbiol. Biotech. 58, 695ā€“703.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Fraser, C. M., Gocayne, J. D., White, O., Adams, M. D., Clayton, R. A., Fleischmann, R. D., et al. (1995) The minimal gene complement of Mycoplasma genitalium. Science 270, 397ā€“403.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Lewis, K. (1999) Multidrug resistance: Versatile drug sensors of bacterial cells. Curr. Biol. 9, R403ā€“R407.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Clayton, R. A., White, O., Ketchum, K. A., and Venter, J. C. (1997) The first genome from the third domain of life. Nature 387, 459ā€“462.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Smith, R. S., Wolfgang, M. C., and Lory, S. (2004). An adenylate cyclase-controlled signaling network regulates Pseudomonas aeruginosa virulence in a mouse model of acute pneumonia. Infect. Immun. 72, 1677ā€“1684.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Humana Press Inc.

About this protocol

Cite this protocol

Sakharkar, K.R., Sakharkar, M.K., Chow, V.T. (2008). Biocomputational Strategies for Microbial Drug Target Identification. In: Champney, W.S. (eds) New Antibiotic Targets. Methods In Molecular Medicineā„¢, vol 142. Humana Press. https://doi.org/10.1007/978-1-59745-246-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-246-5_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-915-4

  • Online ISBN: 978-1-59745-246-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics