Skip to main content

Abstract

Early attempts at bone densitometry used conventional x-rays with a step wedge made from an aluminum or ivory phantom included in the field of view as a means of calibration. The bone density was calculated by a visual comparison of the density of the bone and the known densities of the each of the steps on the phantom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cameron JR, Sorenson J. Measurement of bone mineral in vivo: an improved method. Science 1963;11:230–232.

    Article  Google Scholar 

  2. Madsen M, Peppler W, Mazess RB. Vertebral and total body bone mineral content by dual photon absorptiometry. Calcif Tissue Res 1976;21Suppl:361–364.

    PubMed  Google Scholar 

  3. Kelly TL, Crane G, Baran D. Single x-ray absorptiometry of the forearm: precision, correlation, and reference data. Calcif Tissue Int 1994;53:212–218.

    Article  Google Scholar 

  4. Kelly TL, Slovik D, Schoenfeld DA, Neer RM. Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab 1988;67:839–844.

    PubMed  CAS  Google Scholar 

  5. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res 1992;7:137–145.

    PubMed  CAS  Google Scholar 

  6. Kroger H, Vainio P, Nieminen J, Kotaniemi A. Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone 1995;17:157–159.

    Article  PubMed  CAS  Google Scholar 

  7. Leonard MB, Feldman HI, Zemel BS, Berlin JA, Barden EM, Stallings VA. Evaluation of low density spine software for the assessment of bone mineral density in children. J Bone Miner Res 1998;13:1687–1690.

    Article  PubMed  CAS  Google Scholar 

  8. Cole JH, Scerpella TA, van der Meulen MC. Fan-beam densitometry of the growing skeleton: are we measuring what we think we are? J Clin Densitom 2005;8:57–64.

    Article  PubMed  Google Scholar 

  9. Pocock NA, Noakes KA, Majerovic Y, Griffiths MR. Magnification error of femoral geometry using fan beam densitometers. Calcif Tissue Int 1997;60:8–10.

    Article  PubMed  CAS  Google Scholar 

  10. Oldroyd B, Smith AH, Truscott JG. Cross-calibration of GE/Lunar pencil and fan-beam dual energy densitometers—bone mineral density and body composition studies. Eur J Clin Nutr 2003;57:977–987.

    Article  PubMed  CAS  Google Scholar 

  11. Radiation Risk in Perspective. Health Physics Society. Accessed May 24, 2006. http://hps.org/documents/radiationrisk.pdf

  12. Board statement on diagnostic medical exposures to ionizing radiation during pregnancy and estimates of late radiation effects to the U.K. population. Documents of NRPB4, No 4, 1993.

    Google Scholar 

  13. Annals of the ICRP. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. 1991; Volume 21:No. 1-3.

    Google Scholar 

    Google Scholar 

  14. Lewis MK, Blake GM, Fogelman I. Patient dose in dual x-ray absorptiometry. Osteoporos Int 1994;4:11–15.

    Article  PubMed  CAS  Google Scholar 

  15. Njeh CF, Apple K, Temperton DH, Boivin CM. Radiological assessment of a new bone densitometer the Lunar EXPERT. Br J Radiol 1996;69:335–340.

    PubMed  CAS  Google Scholar 

  16. Starritt H C, Elvins D M, Ring F. Radiation dose and the Hologic Acclaim x-ray densitometer, in Current Research in Osteoporosis and Bone Mineral Measurement, 4th ed. London: British Institute of Radiology, 1996; pp. 99–100.

    Google Scholar 

  17. Zanchetta JR, Plotkin H, Alvarez Filgueira ML. Bone mass in children: normative values for the 2–20-year-old population. Bone1995;16:393S–399S

    PubMed  CAS  Google Scholar 

  18. Shepherd J, Fan B, Sherman M, et al. Pediatric DXA precision varies with age. J Bone Miner Res 2004;19(Suppl 1):234, abstract # SU124.

    Google Scholar 

  19. Nejh CF, Hans D, Li J, et al. Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos Int 2000;11(12):1051–1062.

    Article  Google Scholar 

  20. Leonard MB, Propert KJ, Zemel BS, Stallings VA, Feldman HI. Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr 1999;135:182–188.

    Article  PubMed  CAS  Google Scholar 

  21. WHO. The WHO Study Group: assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Geneva, Switzerland, 1994.

    Google Scholar 

  22. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996;312:1254–1259.

    PubMed  CAS  Google Scholar 

  23. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 1993;341:72–75.

    Article  PubMed  CAS  Google Scholar 

  24. Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 2001;12:989–995.

    Article  PubMed  CAS  Google Scholar 

  25. Taylor BC, Schreiner PJ, Stone KL, et al. Long-term prediction of incident hip fracture risk in elderly white women: Study of osteoporotic fractures. J Am Geriatr Soc 2004;52:1479–1486.

    Article  PubMed  Google Scholar 

  26. Prentice A, Parsons TJ, Cole TJ. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 1994;60:837–842.

    PubMed  CAS  Google Scholar 

  27. Molgaard C, Thomsen BL, Prentice A, Cole TJ, Michaelsen KF. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 1997;76:9–15.

    PubMed  CAS  Google Scholar 

  28. Heaney RP. Bone mineral content, not bone mineral density, is the correct bone measure for growth studies. Am J Clin Nutr 2003;78:350–352.

    PubMed  CAS  Google Scholar 

  29. Leonard MB, Shults J, Elliott DM, Stallings VA, Zemel BS. Interpretation of whole body dual energy x-ray absorptiometry measures in children: Comparison with peripheral quantitative computed tomography. Bone 2004;34:1044–1052.

    Article  PubMed  Google Scholar 

  30. Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: A longitudinal study. J Clin Endocrinol Metab 1999;84:4702–4712.

    Article  PubMed  CAS  Google Scholar 

  31. Wang MC, Aguirre M, Bhudhikanok GS, et al. Bone mass and hip axis length in healthy Asian, black, Hispanic, and white American youths. J Bone Miner Res 1997;12:1922–1935.

    Article  PubMed  CAS  Google Scholar 

  32. Blake GM, Parker JC, Buxton FM, Fogelman I. Dual x-ray absorptiometry: A comparison between fan beam and pencil beam scans. Br J Radiol 1993;66:902–906.

    Article  PubMed  CAS  Google Scholar 

  33. Tothill P, Laskey MA, Orphanidou CI, Van Wijk M. Anomalies in dual energy x-ray absorptiometry measurements of total-body bone mineral during weight change using Lunar, Hologic and Norland instruments. Br J Radiol 1999;72:661–669.

    PubMed  CAS  Google Scholar 

  34. Tothill P. Dual-energy x-ray absorptiometry measurements of total-body bone mineral during weight change. J Clin Densitometry 2005;8(1):31–38.

    Article  Google Scholar 

  35. Tothill P, Avenill A. Anomalies in the measurement of changes in bone mineral density of the spine by dual-energy x-ray absorptiometry. Calc Tissue Int 1998; 63:126–133.

    Article  CAS  Google Scholar 

  36. Zemel BS, Leonard MB, Stallings VA. Evaluation of the Hologic experimental pediatric whole body analysis software in healthy children and children with chronic disease (Abstract). J Bone Miner Res 2000;15(Supp l1):S400.

    Google Scholar 

  37. Kelly TL. Pediatric whole body measurements J Bone Miner Res 2002;17(Suppl 1): Abstract#S296.

    Google Scholar 

  38. Hui SL, Gao S, Zhou XH, Johnston CC Jr, Lu Y, Gluer CC, Grampp S, Genant H. Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 1997;12:1463–1470.

    Article  PubMed  CAS  Google Scholar 

  39. del Rio L, Carrascosa A, Pons F, Gusinye M, Yeste D, Domenech FM. Bone mineral density of the lumbar spine in white Mediterranean Spanish children and adolescents: Changes related to age, sex, and puberty. Pediatr Res 1994;35:362–366.

    Article  PubMed  Google Scholar 

  40. Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD. Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab 1990;70:1330–1333.

    PubMed  CAS  Google Scholar 

  41. Katzman DK, Bachrach LK, Carter DR, Marcus R. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 1991;73:1332–1339.

    Article  PubMed  CAS  Google Scholar 

  42. Lu PW, Briody JN, Ogle GD, et al. Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res 1994;9:1451–1458.

    PubMed  CAS  Google Scholar 

  43. Southard RN, Morris JD, Mahan JD, et al. Bone mass in healthy children: Measurement with quantitative DXA. Radiology 1991;179:735–738.

    PubMed  CAS  Google Scholar 

  44. Horlick M, Wang J, Pierson RN Jr, Thornton JC. Prediction models for evaluation of total-body bone mass with dual-energy x-ray absorptiometry among children and adolescents. Pediatrics 2004;114:337–345.

    Article  Google Scholar 

  45. Plotkin H, Nunez M, Alvarez Filgueira ML, Zanchetta JR. Lumbar spine bone density in Argentine children. Calcif Tissue Int 1996;58:144–149.

    PubMed  CAS  Google Scholar 

  46. Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, Bonjour JP. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. Clin Endocrinol Metab 1992;75:1060–1065.

    Article  CAS  Google Scholar 

  47. Nelson DA, Simpson PM, Johnson CC, Barondess DA, Kleerekoper M. The accumulation of whole body skeletal mass in third-and fourth-grade children: effects of age, gender, ethnicity, and body composition. Bone 1997;20:73–78.

    Article  PubMed  CAS  Google Scholar 

  48. Parfitt AM. Genetic effects on bone mass and turnover-relevance to black/white differences. J Am Coll Nutr 1997;16:325–333.

    PubMed  CAS  Google Scholar 

  49. Pietrobelli A, Faith MS, Wang J, Brambilla P, Chiumello G, Heymsfield SB. Association of lean tissue and fat mass with bone mineral content in children and adolescents. Obes Res 2002;10:56–60.

    Article  PubMed  Google Scholar 

  50. Chan GM, Hoffman K, McMurry M. Effects of dairy products on bone and body composition in pubertal girls. J Pediatr 1995;126:551–556.

    Article  PubMed  CAS  Google Scholar 

  51. Sentipal JM, Wardlaw GM, Mahan J, Matkovic V. Influence of calcium intake and growth indexes on vertebral bone mineral density in young females. Am J Clin Nutr 1991;54:425–428.

    PubMed  CAS  Google Scholar 

  52. Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC. Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction in heritability estimates. J Bone Miner Res 1991;6:561–567.

    Article  PubMed  CAS  Google Scholar 

  53. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The University of Saskatchewan bone mineral accrual study. J Bone Miner Res 1999;14:1672–16.

    Article  PubMed  CAS  Google Scholar 

  54. Magarey AM, Boulton TJ, Chatterton BE, Schultz C, Nordin BE, Cockington RA. Bone growth from 11 to 17 years: relationship to growth, gender and changes with pubertal status including timing of menarche. Acta Paediatrica 1999;88:139–146.

    Article  PubMed  CAS  Google Scholar 

  55. Seeman E. From density to structure: growing up and growing old on the surfaces of bone. J Bone Miner Res 1997;12:509–521.

    Article  PubMed  CAS  Google Scholar 

  56. Seeman E, Hopper JL, Young NR, Formica C, Goss P, Tsalamandris C. Do genetic factors explain associations between muscle strength, lean mass, and bone density? A twin study. American Journal of Physiology 1996;270:E320–327.

    PubMed  CAS  Google Scholar 

  57. Bachrach LK. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab 2001;12:22–28.

    Article  PubMed  CAS  Google Scholar 

  58. Leib ES, Lewiecki EM, Binkley N, Hamdy RC. Official positions of the International Society for Clinical Densitometry. J Clin Densitom 2004;7:1–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Crabtree, N.J., Leonard, M.B., Zemel, B.S. (2007). Dual-Energy X-Ray Absorptiometry. In: Sawyer, A.J., Bachrach, L.K., Fung, E.B. (eds) Bone Densitometry in Growing Patients. Current Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-59745-211-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-211-3_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-634-4

  • Online ISBN: 978-1-59745-211-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics