Skip to main content

Nanoelectroporation: A First Look

  • Protocol
Electroporation Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 423))

Abstract

As the medical field moves from treatment of diseases with drugs to treatment with genes, safe and efficient gene delivery systems are needed to make this transition. One such safe, nonviral, and efficient gene delivery system is electroporation (electrogenetherapy). Exciting discoveries by using electroporation could make this technique applicable to drug and vaccine delivery in addition to gene delivery. Typically, milli- and microsecond pulses have been used for electroporation. Recently, the use of nanosecond electric pulses (10–300 ns) at very high magnitudes (10–300 kV/cm) has been studied for direct DNA transfer to the nucleus in vitro. This article reviews the work done using high intensity, nanopulses, termed as nanoelectroporation (nano-EP), in electroporation gene delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Heller, R., Jaroszeski, M., Grass, L., et al. (1996) Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy. Cancer. 77, 964–971.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Gehl, J. and Geertsen, P.F. (2000) Efficient palliation of haemorrhaging malignant melanoma skin metastases by electrochemotherapy. Melanoma Res. 10, 1–5.

    Article  Google Scholar 

  3. 3. Mir, L.M., Bureau, M.F., Gehl, J., et al. (1999) High efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. U.S.A. 96, 4262–4267.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Dev, S.B., Rabussay D.P., Widera G., and Hofmann, G.A. (2000) Medical applications of electroporation. IEEE Trans. Plasma Sci. 28, 206–223.

    Article  CAS  Google Scholar 

  5. 5. Heller, R., Gilbert, R., and Jaroszeski, M.J. (2000) Clinical trials for solid tumors using electrochemotherapy. In: Jaroszeski, M., Heller, R., and Gilbert, R. (eds.). Electrochemotherapy, electrogenetherapy, and transdermal delivery. Humana, New Jersey, pp. 137–156.

    Chapter  Google Scholar 

  6. 6. Gothelf, A., Mir, L., and Gehl, J. (2003) Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev. 29, 371–387.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Rodriguez-Cuevas, S., Barroso-Bravo, S., Almanza-Estrada, J., Cristobal-Marinez, L., and Gonzalez-Rodriguez, E. (2001) Electrochemotherapy in primary and metastatic skin tumors: phase II trial using intralesional bleomycin. Arch. Med. Res. 32, 273–276.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Jaroszeski, M., Gilbert, R., Nicolau, C., and Heller, R. (2000) Delivery of genes in vivo using pulsed electric fields. In: Jaroszeski, M., Heller, R., and Gilbert, R. (eds.). Electrochemotherapy, electrogenetherapy, and transdermal delivery. Humana, New Jersey, pp. 173–186.

    Chapter  Google Scholar 

  9. 9. Martin, J.B., Young, J.L., Benoit, J.N., and Dean, D.A. (2000) Gene transfer to intact mesenteric arteries by electroporation. J. Vasc. Res. 37, 372–380.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Schoenbach, K.H., Beebe, S.J., and Buescher, E.S. (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics. 22, 440–448.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Beebe S.J., Fox, P.M., Rec, L.J., Willis, E.L., and Schoenbach, K.H. (2003) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J. 17, 1493–1495.

    CAS  PubMed  Google Scholar 

  12. 12. Muller, K.J., Sukhorukov, V.L., and Zimmermann, U. (2001) Reversible electropermeabilization of mammalian cells by high-intensity, ultra-short, pulses of submicrosecond duration. J. Membr. Biol. 184, 161–170.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Vernier, P.T., Li, A., Marcu, L., Craft, C.M., and Gundersen, M.A. (2003) Ultrashort pulsed electric fields induce membrane phospholipids translocation and caspase activation: differential sensitivities of Jurkat T lymphoblasts and rat glioma C6 cells. IEEE Trans. Dielectr. Electr. Insul. 10, 795–809.

    Article  CAS  Google Scholar 

  14. 14. Vernier, P.T., Sun, Y., Marcu, L., Salemi, S., Craft, C., and Gundersen, M.A. (2003) Calcium bursts induced by nanosecond electric pulses. Biochem. Biophys. Res. Commun. 310, 286–295.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Schwan, H.P. (1989) Dielectrophoresis and rotation of cells. In: Neumann, E., Sowers, A.E., and Jordan, C.A. (eds.). Electroporation and electrofusion in cell biology. Plenum, New York, pp. 3–21.

    Google Scholar 

  16. 16. Kristiansen, M. and Hagler, M.O. (1987) Pulsed power systems. In: Meyers, R.A. (ed.). Encyclopedia of physical science and technology. Academic, Orlando, FL, pp. 410–419.

    Google Scholar 

  17. 17. Schoenbach, K.H., Peterkin, F.E., Alden, W.A., Beebe S.J. (1997) The effect of pulsed electric fields on biological cells: experiments and applications. IEEE Trans. Plasma Sci. 25, 284–292.

    Article  Google Scholar 

  18. 18. Mussauer, H., Sukhorukov, V.L., Haase, A., and Zimmermann, U. (1999) Resistivity of red blood cells against high intensity, short-duration electric field pulses induced by chelating agents. J. Membr. Biol. 170, 121–133.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Schoenbach, K.H., Katsuki, S., Stark, R.H., Buescher, E.S., Beebe, S.J. (2002) Bioelectrics—new applications for pulsed power technology. IEEE Trans. Plasma Sci. 30, 293–300.

    Article  CAS  Google Scholar 

  20. 20. Ellappan, P. and Sundararajan, R. (2005) A simulation study of the electrical model of biological cells. J. Electrostat. 63, 297–307.

    Article  Google Scholar 

  21. 21. Schwan, H.P. (1989) Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 17, 25–104.

    PubMed  Google Scholar 

  22. 22. Beebe, S.J., Blackmore, P.F., White, J., Joshi, R.P., and Schoenbach, K.H. (2004) Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. Physiol. Meas. 25, 1077–1093.

    Article  PubMed  Google Scholar 

  23. 23. Mastrangelo, A.J., Hardwick, J.M., and Betenbaugh, M.J. (2000) Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol. Bioeng. 67, 555–564.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Hofmann, F., Ohnimus, H., Scheller, C., Strupp, W., Zimmermann, U., and Jassoy, C. (1999) Electric field pulses can induce apoptosis. J. Membr. Biol. 169, 103–109.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Ashush, H., Rozenszajn, L.A., Blass, M., et al. (2000) Apoptosis induction of human myeloid leukemic cells by ultrasound exposure. Cancer Res. 60, 1014–1020.

    CAS  PubMed  Google Scholar 

  26. 26. Feril, L.B. and Kondo, T. (2004) Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and biosafety of ultrasound. J. Radiat. Res. 45, 479–489.

    Article  PubMed  Google Scholar 

  27. 27. Kroemer, G., Dallaporta, B., and Resche-Rigon, M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619–642.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Schoenbach, K.H., Joshi, R.P., Kolb, J.F., et al. (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc. IEEE. 92, 1122–1137.

    Article  CAS  Google Scholar 

  29. 29. Tyurina, Y.Y., Serinkan, F.B., Tyurint, V.A., et al. (2004) Lipid antioxidant, etoposide, inhibits phosphatidylserine externalization and macrophage clearance of apoptotic cells by preventing phosphatidylserine oxidation. J. Biol. Chem. 279, 6056–6064.

    Article  CAS  PubMed  Google Scholar 

  30. 30. Naito, M., Nagashima, K., Mashima, T., and Tsuruo, T. (1997) Phosphatidylserine externalization is a downstream event of interleukin-1b-converting enzyme family protease activation during apoptosis. Blood. 89, 2060–2066.

    CAS  PubMed  Google Scholar 

  31. 31. Vernier, P.T., Sun, Y., Marcu, L., Carft, C.M., and Gundersen, M.A. (2004) Nanoelectropulse-induced phosphatidylserine translocation. Biophys. J. 86, 4040–4048.

    Article  CAS  PubMed  Google Scholar 

  32. 32. Hall, E.H., Schoenbach, K.H., and Beebe, S.J. (2005) Nanosecond pulsed electric fields (nsPEF) induce direct electric field effects and biological effects on human colon carcinoma cells. DNA Cell Biol. 24, 283–291.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Beebe, S.J., Fox, P.M., Rec, L.J., Somers, K., Stark, R.H., and Schoenbach, K.H. (2002) Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans. Plasma Sci. 30, 286–292.

    Article  CAS  Google Scholar 

  34. 34. Behrend, M., Kuthi, A., Xianyue, G., et al. (2003) Pulse generators for pulsed electric field exposure of biological cells and tissues. IEEE Trans. Dielectr. Electr. Insul. 10, 820–825.

    Article  Google Scholar 

  35. 35. Buescher, E.S. and Schoenbach, K.H. (2003) Effects of submicrosecond, high intensity, pulsed electric fields on living cells—intracellular electromanipulation. IEEE Trans. Dielectr. Electr. Insul. 10, 788–795.

    Article  Google Scholar 

  36. 36. Vernier, P.T., Thu, M.M.S., Marcu, L., Craft, C.M., and Gundersen, G.A. (2004) Nanosecond electroperturbation—mammalian cell sensitivity and bacterial spore resistance. IEEE Trans. Plasma Sci. 32, 1620–1625.

    Article  Google Scholar 

  37. Behrend, M., Kuthi, A., and Vernier, P.T. (2002) Micropulser for real-time microscopy of cell electroperturbation. In: Proceedings of the 25th international IEEE power modulator symposium, Hollywood, CA, pp. 358–361.

    Google Scholar 

  38. 38. Chaney, A. and Sundararajan, R. (2004) Simple MOSFET-based high voltage nanosecond pulse circuit. IEEE Trans. Plasma Sci. 32, 1919–1924.

    Article  Google Scholar 

  39. 39. Sundararajan, R., Shao, J., Soundararajan, E., Gonzales, J., and Chaney, A. (2004) Performance of solid state high voltage pulsers for biological applications-a preliminary study. IEEE Trans. Plasma Sci. 32, 2017–2025.

    Article  CAS  Google Scholar 

  40. 40. Hair, P.S., Schoenbach, K.H., and Buescher, E.S. (2003) Sub-microsecond, intense pulsed electric field applications to cells show specificity effects. Bioelectrochemistry. 61, 65–72.

    Article  CAS  PubMed  Google Scholar 

  41. 41. Deng, J., Schoenbach, K.H., Buescger, E.S., Hair, P.S., Fox, P.M., and Beebe, S.J. (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys. J. 84, 2709–2714.

    Article  CAS  PubMed  Google Scholar 

  42. 42. Yinghua, S., Vernier, P.T., Behrend, M., Marcu, L., and Gundersen, M.A. (2005) Electrode microchamber for noninvasive perturbation of mammalian cells with nanosecond pulsed electric fields. IEEE Trans. Nanobiosci. 4(5), 277–283.

    Google Scholar 

  43. 43. Schwan, H.P. (1985) Dielectric properties of cells and tissues. In: Chiabrera, A., Nicolini, C., and Schwan, H.P. (ed.). Interactions between electromagnetic fields and cells. Plenum, New York, pp. 75–97.

    Google Scholar 

  44. 44. Vernier, P.T., Ziegler, M.J., Sun, Y., Chang, W.V., Gundersen, M.A., and Tieleman, D.P. (2006) Nanopore formation and phosphatidylserine externalization in a phospholipids bilayer at high transmembrane potential. J. Am. Chem. Soc. 128, 6288–6289.

    Article  CAS  PubMed  Google Scholar 

  45. 45. Feril, L.B., Kondo, T., Takaya, K., and Riesz, P. (2004) Enhanced ultrasound-induced apoptosis and cell lysis by a hypotonic medium. Int. J. Radiat. Biol. 80, 165–175.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is very grateful to Josh Hutcheson, School of Chemical and Biomolecular Engineering of Georgia Institute of Technology, for his excellent review of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this protocol

Cite this protocol

Sundararajan, R. (2008). Nanoelectroporation: A First Look. In: Li, S. (eds) Electroporation Protocols. Methods in Molecular Biology™, vol 423. Humana Press. https://doi.org/10.1007/978-1-59745-194-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-194-9_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-877-5

  • Online ISBN: 978-1-59745-194-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics